granite complex
Recently Published Documents


TOTAL DOCUMENTS

155
(FIVE YEARS 21)

H-INDEX

27
(FIVE YEARS 1)

LITOSFERA ◽  
2021 ◽  
Vol 21 (5) ◽  
pp. 601-608
Author(s):  
A. A. Krasnobaev ◽  
V. N. Puchkov ◽  
N. D. Sergeeva ◽  
S. V. Busharina

Research subject. Magmatic complexes that are developed in the lower (volcanogenic-sedimentary) part of the Ai Formation of the Lower Riphean of the Taratash anticline in the Southern Urals. Results. For the frst time, the Lower Permian SHRIMP dating (288.6 ± 3.1 Ma by U-Pb method on zircon from monzogabbro) was obtained for a dike cutting the basalts of the Lower Paleozoic (420–450 Ma) age. Conclusions. On the eastern slope of the Urals there is a chain of massifs which are close in the age. The chain belongs to the Lower Permian Stepninsky monzogabbro-granosyenite-granite complex, represented by the Uiski, Vandyshevski, Biryukovski and Stepninski intrusions with the age of 281 ± 2, 280 ± 2 and 286 ± 2 Ma, correspondingly (U-Pb method after zircons, SHRIMP-II, VSEGEI) and earlier obtained dates 281 ± 4 Ma (Rb-Sr isochrone) and 283 ± 2 Ma (isotope Pb-Pb method after zircons). The Stepninsky complex was described earlier as plume-dependent. The monzogabbro dike, described in this paper, although being at a considerable distance from the Sepninsky complex, is situated at a strike of the chain of the stepninsky intrusions, is close to them by the composition and age and can be ascribed to the same plume episode. The idea of the plume character of the complex was ехрressed by us relatively long ago based on a superimposed character of the chain of the intrusions over the earlier, collisional Uralian structures. As for the geochemical character (monzogabbro) the dike conforms with one of two standard trends of the Stepninsky complex – monzonite (monzogabbro, monzodiorites, syenites).


Author(s):  
Christoph Breitkreuz ◽  
Alexandra Käßner ◽  
Marion Tichomirowa ◽  
Manuel Lapp ◽  
Shan Huang ◽  
...  

AbstractSamples and documentation of outcrops and drillings, facies analysis, whole rock geochemistry and radiometric ages have been employed to re-evaluate the Late Carboniferous Tharandt Forest caldera (TFC) and the co-genetic Niederbobritzsch granite (NBG) in the eastern Erzgebirge near Dresden, Germany. The c. 52 km2 TFC harbours strongly welded ignimbrites with a preserved minimum thickness of 550 m. Composition of initial fallout tephra at the base of the TFC fill, comprising lithics of rhyolitic and basic lava, and of silica-rich pyroclastic rocks, suggests a bimodal volcanic activity in the area prior to the climactic TFC eruption. The lower part of the TFC fill comprises quartz-poor ignimbrites, overlain by quartz-rich ignimbrites, apparently without a depositional break. Landslides originating from the collapse collar of the caldera plunged into the still hot TFC fill producing monolithic gneiss mesobreccia with clasts ≤ 1 m in a pyroclastic matrix. Aphanitic and porphyritic rhyolitic magma formed ring- and radial dykes, and subvolcanic bodies in the centre of TFC. Whole rock geochemical data indicate a high silica (most samples have > 73 wt% SiO2) rhyolitic composition of the TFC magma, and a similar granodiorite–granitic composition for the NBG. Based on drillings and caldera extent, a minimum volume of 22 km3 of TFC fill is preserved, the original fill is assumed at about 33 km3. This estimate translates into a denudation of at least c. 210 m during Late Paleozoic to pre-Cenomanian. Telescopic subsidence of the TFC took place in two, perhaps three stages. A possible TFC outflow facies has been completely eroded and distal TFC tuff has not been recognized in neighboring basins. New CA-ID-TIMS measurements on two TFC samples gave mean zircon ages of 313.4 ± 0.4 Ma and 311.9 ± 0.4 Ma; two samples from NBG resulted in 318.2 ± 0.5 Ma and 319.5 ± 0.4 Ma. In addition, for one sample of the ring dyke an age of ca. 314.5 ± 0.5 Ma has been obtained. These ages, together with field relations, allow for a model of a long-standing evolution of an upper crustal magmatic system (~ 5 Ma?), where pulses of magmatic injection and crustal doming alternate with magmatic quietness and erosion. Together with the Altenberg–Teplice Volcanic Complex, located some 10 km to the southeast, the TFC–NBG Complex represents an early post-Variscan magmatic activity in central Europe.


Author(s):  
Sheng Wang ◽  
Yingde Jiang ◽  
Roberto Weinberg ◽  
Karel Schulmann ◽  
Jian Zhang ◽  
...  

Flow of partially molten crust is a key contributor to mass and heat redistribution within orogenic systems, however, this process has not yet been fully understood in accretionary orogens. This issue is addressed in a Devonian migmatite-granite complex from the Chinese Altai through structural, petrological, and geochronological investigations presented in this study. The migmatite-granite complex records a gradual evolution from metatexite, diatexite to granite and preserves a record of two main Devonian phases of deformation designated D1 and D2. The D1 phase was subdivided into an early crustal thickening episode (D1B) and a later extensional episode (D1M) followed by D2 upright folding. The D1M episode is associated with anatexis in the deep crust. Vertical shortening, associated with D1M, gave rise to the segregation of melt and formation of a sub-horizontal layering of stromatic metatexite. This fabric was reworked by the D2 deformation associated with the migration of anatectic magma in the cores of F2 antiforms. Geochronological investigations combined with petro-structural analysis reveal that: (1) D1M partial melting started probably at 420−410 Ma and formed sub-horizontal stromatic metatexites at ∼30 km depth; (2) The anatectic magma accumulated and migrated when a drainage network developed, as attested by the pervasive formation of massive diatexite migmatites, at 410−400 Ma; (3) Soon after, massive flow of the partially molten crust from orogenic lower to orogenic upper crustal levels, assisted by the interplay between D2 upright folding and magma diapirism, led to migmatite-granite emplacement in the cores of regional F2 antiforms that lasted until at least 390 Ma; (4) a terminal stage was manifested by the emplacement of 370−360 Ma granite dykes into the surrounding metamorphic envelope. We propose that Devonian anatexis assisted by deformation governed first the horizontal and then the vertical flow of partially molten orogenic lower crust, which drove crustal flow, mass redistribution, and crustal differentiation in the accretionary system of the Chinese Altai.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yuzhong Liao ◽  
Bo Zhao ◽  
Dehui Zhang ◽  
Leonid V. Danyushevsky ◽  
Tonglin Li ◽  
...  

AbstractThe world-class Shizhuyuan W–Sn–Mo–Bi deposit is spatially related to the Qianlishan granite complex (QGC) in Hunan Province, China. However, the age and classification of the QGC are still debated, and a better understanding of the temporal genetic relationship between the QGC and the Shizhuyuan deposit is essential. Here, we present chemical compositions the intrusive phases of the QGC and the results of detailed zircon U–Pb dating and muscovite Ar–Ar dating of a mineralized greisen vein. Our new zircon laser ablation inductively coupled plasma mass spectrometry U–Pb age data constrain the emplacement of the QGC to 155–151.7 Ma. According to petrological, geochemical and geochronological data and the inferred redox conditions, the QGC can be classified into four phases: P1, porphyritic biotite granites; P2, porphyritic biotite granites; P3, equigranular biotite granite; and P4, granite porphyry dikes. All phases, and especially P1-P3, have elevated concentrations of ore-forming metals and heat-producing elements (U, Th, K; volume heat-producing rate of 5.89–14.03 μWm−3), supplying the metal and heat for the metalogic process of the Shizhuyuan deposit. The Ar–Ar muscovite age (154.0 ± 1.6 Ma) of the mineralized greisen vein in the Shizhuyuan deposit is consistent with the emplacement time of the QGC, suggesting their temporal genetic relationship.


Sign in / Sign up

Export Citation Format

Share Document