Phenotypic spectrum associated with de novo mutations in QRICH1 gene

2017 ◽  
Vol 93 (2) ◽  
pp. 286-292 ◽  
Author(s):  
A. Ververi ◽  
M. Splitt ◽  
J. C. S. Dean ◽  
A. F. Brady ◽  
Neurology ◽  
2017 ◽  
Vol 89 (4) ◽  
pp. 385-394 ◽  
Author(s):  
Sarah von Spiczak ◽  
Katherine L. Helbig ◽  
Deepali N. Shinde ◽  
Robert Huether ◽  
Manuela Pendziwiat ◽  
...  

Objective:To evaluate the phenotypic spectrum caused by mutations in dynamin 1 (DNM1), encoding the presynaptic protein DNM1, and to investigate possible genotype-phenotype correlations and predicted functional consequences based on structural modeling.Methods:We reviewed phenotypic data of 21 patients (7 previously published) with DNM1 mutations. We compared mutation data to known functional data and undertook biomolecular modeling to assess the effect of the mutations on protein function.Results:We identified 19 patients with de novo mutations in DNM1 and a sibling pair who had an inherited mutation from a mosaic parent. Seven patients (33.3%) carried the recurrent p.Arg237Trp mutation. A common phenotype emerged that included severe to profound intellectual disability and muscular hypotonia in all patients and an epilepsy characterized by infantile spasms in 16 of 21 patients, frequently evolving into Lennox-Gastaut syndrome. Two patients had profound global developmental delay without seizures. In addition, we describe a single patient with normal development before the onset of a catastrophic epilepsy, consistent with febrile infection-related epilepsy syndrome at 4 years. All mutations cluster within the GTPase or middle domains, and structural modeling and existing functional data suggest a dominant-negative effect on DMN1 function.Conclusions:The phenotypic spectrum of DNM1-related encephalopathy is relatively homogeneous, in contrast to many other genetic epilepsies. Up to one-third of patients carry the recurrent p.Arg237Trp variant, which is now one of the most common recurrent variants in epileptic encephalopathies identified to date. Given the predicted dominant-negative mechanism of this mutation, this variant presents a prime target for therapeutic intervention.


2018 ◽  
Vol 56 (5) ◽  
pp. 674-678 ◽  
Author(s):  
Jennie C. Lacour ◽  
Lori McBride ◽  
Hugo St. Hilaire ◽  
Gerhard S. Mundinger ◽  
Michael Moses ◽  
...  

We report 2 cases of mandibulofacial dysostosis with microcephaly (MFDM) with different and novel de novo mutations in the elongation factor Tu GTP binding domain containing 2 gene. Both cases were initially thought to have alternative disorders but were later correctly diagnosed through whole-exome sequencing. These cases expand upon our knowledge of the phenotypic spectrum in patients with MFDM, which will aid in defining the full phenotype of this disorder and increase awareness of this condition.


2021 ◽  
Author(s):  
Danny Antaki ◽  
Adam Maihofer ◽  
Marieke Klein ◽  
James Guevara ◽  
Jakob Grove ◽  
...  

The genetic etiology of autism spectrum disorder (ASD) is multifactorial with contributions from rare variants, polygenic risk, and sex. How combinations of factors determine risk for ASD is unclear. In 11,313 ASD families (N = 37,375 subjects), we investigated the effects rare and polygenic risk individually and in combination. We show that genetic liability for ASD differs by sex, with females having a greater polygenic load, and males having a lower liability threshold as evident by a negative correlation of rare and polygenic risk. Multiple genetic factors were associated with differing sets of behavioral traits with effects that differed by sex. Furthermore, the correlation of parental age with genetic risk for ASD was attributable to de novo mutations and sex-biased effects of inherited risk in parents. Our results demonstrate that a phenotypic spectrum of ASD is attributable to the relative loadings and gene-by-sex effects of rare and common variation.


2021 ◽  
Vol 9 ◽  
pp. 2050313X2199098
Author(s):  
Paige Heiman ◽  
Sarah Drewes ◽  
Lina Ghaloul-Gonzalez

Variants in CAMK2-associated genes have recently been implicated in neurodevelopmental disorders and intellectual disability. The clinical manifestations reported in patients with mutations in these genes include intellectual disability (ranging from mild to severe), global developmental delay, seizures, delayed speech, behavioral abnormalities, hypotonia, episodic ataxia, progressive cerebellar atrophy, visual impairments, and gastrointestinal issues. Phenotypic heterogeneity has been postulated. We present a child with neurodevelopmental disorder caused by a pathogenic CAMK2B variant inherited from a healthy mother. A more mildly affected sib was determined to have the same variant. Monoallelic mutations in CAMK2B in patients have previously only been reported as de novo mutations. This report adds to the clinical phenotypic spectrum of the disease and demonstrates intrafamilial variability of expression of a CAMK2B mutation.


Sign in / Sign up

Export Citation Format

Share Document