scholarly journals A familial case of CAMK2B mutation with variable expressivity

2021 ◽  
Vol 9 ◽  
pp. 2050313X2199098
Author(s):  
Paige Heiman ◽  
Sarah Drewes ◽  
Lina Ghaloul-Gonzalez

Variants in CAMK2-associated genes have recently been implicated in neurodevelopmental disorders and intellectual disability. The clinical manifestations reported in patients with mutations in these genes include intellectual disability (ranging from mild to severe), global developmental delay, seizures, delayed speech, behavioral abnormalities, hypotonia, episodic ataxia, progressive cerebellar atrophy, visual impairments, and gastrointestinal issues. Phenotypic heterogeneity has been postulated. We present a child with neurodevelopmental disorder caused by a pathogenic CAMK2B variant inherited from a healthy mother. A more mildly affected sib was determined to have the same variant. Monoallelic mutations in CAMK2B in patients have previously only been reported as de novo mutations. This report adds to the clinical phenotypic spectrum of the disease and demonstrates intrafamilial variability of expression of a CAMK2B mutation.

Neurology ◽  
2017 ◽  
Vol 89 (4) ◽  
pp. 385-394 ◽  
Author(s):  
Sarah von Spiczak ◽  
Katherine L. Helbig ◽  
Deepali N. Shinde ◽  
Robert Huether ◽  
Manuela Pendziwiat ◽  
...  

Objective:To evaluate the phenotypic spectrum caused by mutations in dynamin 1 (DNM1), encoding the presynaptic protein DNM1, and to investigate possible genotype-phenotype correlations and predicted functional consequences based on structural modeling.Methods:We reviewed phenotypic data of 21 patients (7 previously published) with DNM1 mutations. We compared mutation data to known functional data and undertook biomolecular modeling to assess the effect of the mutations on protein function.Results:We identified 19 patients with de novo mutations in DNM1 and a sibling pair who had an inherited mutation from a mosaic parent. Seven patients (33.3%) carried the recurrent p.Arg237Trp mutation. A common phenotype emerged that included severe to profound intellectual disability and muscular hypotonia in all patients and an epilepsy characterized by infantile spasms in 16 of 21 patients, frequently evolving into Lennox-Gastaut syndrome. Two patients had profound global developmental delay without seizures. In addition, we describe a single patient with normal development before the onset of a catastrophic epilepsy, consistent with febrile infection-related epilepsy syndrome at 4 years. All mutations cluster within the GTPase or middle domains, and structural modeling and existing functional data suggest a dominant-negative effect on DMN1 function.Conclusions:The phenotypic spectrum of DNM1-related encephalopathy is relatively homogeneous, in contrast to many other genetic epilepsies. Up to one-third of patients carry the recurrent p.Arg237Trp variant, which is now one of the most common recurrent variants in epileptic encephalopathies identified to date. Given the predicted dominant-negative mechanism of this mutation, this variant presents a prime target for therapeutic intervention.


2020 ◽  
Vol 139 (11) ◽  
pp. 1363-1379
Author(s):  
Roser Ufartes ◽  
Hanna Berger ◽  
Katharina Till ◽  
Gabriela Salinas ◽  
Marc Sturm ◽  
...  

Abstract We report truncating de novo variants in specific exons of FBRSL1 in three unrelated children with an overlapping syndromic phenotype with respiratory insufficiency, postnatal growth restriction, microcephaly, global developmental delay and other malformations. The function of FBRSL1 is largely unknown. Interestingly, mutations in the FBRSL1 paralogue AUTS2 lead to an intellectual disability syndrome (AUTS2 syndrome). We determined human FBRSL1 transcripts and describe protein-coding forms by Western blot analysis as well as the cellular localization by immunocytochemistry stainings. All detected mutations affect the two short N-terminal isoforms, which show a ubiquitous expression in fetal tissues. Next, we performed a Fbrsl1 knockdown in Xenopus laevis embryos to explore the role of Fbrsl1 during development and detected craniofacial abnormalities and a disturbance in neurite outgrowth. The aberrant phenotype in Xenopus laevis embryos could be rescued with a human N-terminal isoform, while the long isoform and the N-terminal isoform containing the mutation p.Gln163* isolated from a patient could not rescue the craniofacial defects caused by Fbrsl1 depletion. Based on these data, we propose that the disruption of the validated N-terminal isoforms of FBRSL1 at critical timepoints during embryogenesis leads to a hitherto undescribed complex neurodevelopmental syndrome.


Author(s):  
Marjolein J. A. Weerts ◽  
Kristina Lanko ◽  
Francisco J. Guzmán-Vega ◽  
Adam Jackson ◽  
Reshmi Ramakrishnan ◽  
...  

Abstract Purpose Pathogenic variants in SETD1B have been associated with a syndromic neurodevelopmental disorder including intellectual disability, language delay, and seizures. To date, clinical features have been described for 11 patients with (likely) pathogenic SETD1B sequence variants. This study aims to further delineate the spectrum of the SETD1B-related syndrome based on characterizing an expanded patient cohort. Methods We perform an in-depth clinical characterization of a cohort of 36 unpublished individuals with SETD1B sequence variants, describing their molecular and phenotypic spectrum. Selected variants were functionally tested using in vitro and genome-wide methylation assays. Results Our data present evidence for a loss-of-function mechanism of SETD1B variants, resulting in a core clinical phenotype of global developmental delay, language delay including regression, intellectual disability, autism and other behavioral issues, and variable epilepsy phenotypes. Developmental delay appeared to precede seizure onset, suggesting SETD1B dysfunction impacts physiological neurodevelopment even in the absence of epileptic activity. Males are significantly overrepresented and more severely affected, and we speculate that sex-linked traits could affect susceptibility to penetrance and the clinical spectrum of SETD1B variants. Conclusion Insights from this extensive cohort will facilitate the counseling regarding the molecular and phenotypic landscape of newly diagnosed patients with the SETD1B-related syndrome.


2021 ◽  
Author(s):  
Marjolein J.A. Weerts ◽  
Kristina Lanko ◽  
Francisco J. Guzmán-Vega ◽  
Adam Jackson ◽  
Reshmi Ramakrishnan ◽  
...  

ABSTRACTPathogenic variants in SETD1B have been associated with a syndromic neurodevelopmental disorder including intellectual disability, language delay and seizures. To date, clinical features have been described for eleven patients with (likely) pathogenic SETD1B sequence variants. We perform an in-depth clinical characterization of a cohort of 36 unpublished individuals with SETD1B sequence variants, describing their molecular and phenotypic spectrum. Selected variants were functionally tested using in vitro and genome-wide methylation assays. Our data present evidence for a loss-of-function mechanism of SETD1B variants, resulting in a core clinical phenotype of global developmental delay, language delay including regression, intellectual disability, autism and other behavioral issues, and variable epilepsy phenotypes. Developmental delay appeared to precede seizure onset, suggesting SETD1B dysfunction impacts physiological neurodevelopment even in the absence of epileptic activity. Interestingly, males are significantly overrepresented and more severely affected, and we speculate that sex-linked traits could affect susceptibility to penetrance and the clinical spectrum of SETD1B variants. Finally, despite the possibility of non-redundant contributions of SETD1B and its paralogue SETD1A to epigenetic control, the clinical phenotypes of the related disorders share many similarities, indicating that elucidating shared and divergent downstream targets of both genes will help to understand the mechanism leading to the neurobehavioral phenotypes. Insights from this extensive cohort will facilitate the counseling regarding the molecular and phenotypic landscape of newly diagnosed patients with the SETD1B-related syndrome.


Genes ◽  
2020 ◽  
Vol 11 (3) ◽  
pp. 344 ◽  
Author(s):  
Emanuela Leonardi ◽  
Mariagrazia Bellini ◽  
Maria C. Aspromonte ◽  
Roberta Polli ◽  
Anna Mercante ◽  
...  

WAC (WW Domain Containing Adaptor With Coiled-Coil) mutations have been reported in only 20 individuals presenting a neurodevelopmental disorder characterized by intellectual disability, neonatal hypotonia, behavioral problems, and mildly dysmorphic features. Using targeted deep sequencing, we screened a cohort of 630 individuals with variable degrees of intellectual disability and identified five WAC rare variants: two variants were inherited from healthy parents; two previously reported de novo mutations, c.1661_1664del (p.Ser554*) and c.374C>A (p.Ser125*); and a novel c.381+2T>C variant causing the skipping of exon 4 of the gene, inherited from a reportedly asymptomatic father with somatic mosaicism. A phenotypic evaluation of this individual evidenced areas of cognitive and behavioral deficits. The patient carrying the novel splicing mutation had a clinical history of encephalopathy related to status epilepticus during slow sleep (ESES), recently reported in another WAC individual. This first report of a WAC somatic mosaic remarks the contribution of mosaicism in the etiology of neurodevelopmental and neuropsychiatric disorders. We summarized the clinical data of reported individuals with WAC pathogenic mutations, which together with our findings, allowed for the expansion of the phenotypic spectrum of WAC-related disorders.


2020 ◽  
Vol 29 (9) ◽  
pp. 1537-1546
Author(s):  
Yan Huang ◽  
Xiao Mao ◽  
Richard H van Jaarsveld ◽  
Li Shu ◽  
Paulien A Terhal ◽  
...  

Abstract The actin cytoskeleton is regulated by many proteins including capping proteins that stabilize actin filaments (F-actin) by inhibiting actin polymerization and depolymerization. Here, we report two pediatric probands who carry damaging heterozygous de novo mutations in CAPZA2 (HGNC: 1490) and exhibit neurological symptoms with shared phenotypes including global motor development delay, speech delay, intellectual disability, hypotonia and a history of seizures. CAPZA2 encodes a subunit of an F-actin-capping protein complex (CapZ). CapZ is an obligate heterodimer consisting of α and β heterodimer conserved from yeast to human. Vertebrate genomes contain three α subunits encoded by three different genes and CAPZA2 encodes the α2 subunit. The single orthologue of CAPZA genes in Drosophila is cpa. Loss of cpa leads to lethality in early development and expression of the human reference; CAPZA2 rescues this lethality. However, the two CAPZA2 variants identified in the probands rescue this lethality at lower efficiency than the reference. Moreover, expression of the CAPZA2 variants affects bristle morphogenesis, a process that requires extensive actin polymerization and bundling during development. Taken together, our findings suggest that variants in CAPZA2 lead to a non-syndromic neurodevelopmental disorder in children.


Genes ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 452
Author(s):  
Babylakshmi Muthusamy ◽  
Anikha Bellad ◽  
Satish Chandra Girimaji ◽  
Akhilesh Pandey

Shukla-Vernon syndrome (SHUVER) is an extremely rare neurodevelopmental disorder characterized by global developmental delay, intellectual disability, behavioral anomalies, and dysmorphic features. Pathogenic variants in the BCORL1 gene have been identified as the molecular cause for this disorder. The BCORL1 gene encodes for BCL-6 corepressor-like protein 1, a transcriptional corepressor that is an integral component of protein complexes involved in transcription repression. In this study, we report an Indian family with two male siblings with features of Shukla-Vernon syndrome. The patients exhibited global developmental delay, intellectual disability, kyphosis, seizures, and dysmorphic features including bushy prominent eyebrows with synophrys, sharp beaked prominent nose, protuberant lower jaw, squint, and hypoplastic ears with fused ear lobes. No behavioral abnormalities were observed. Whole exome sequencing revealed a novel potentially pathogenic arginine to cysteine substitution (p.Arg1265Cys) in the BCORL1 protein. This is the second report of Shukla-Vernon syndrome with a novel missense variant in the BCORL1 gene. Our study confirms and expands the phenotypes and genotypes described previously for this syndrome and should aid in diagnosis and genetic counselling of patients and their families.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Ilaria Mannucci ◽  
Nghi D. P. Dang ◽  
Hannes Huber ◽  
Jaclyn B. Murry ◽  
Jeff Abramson ◽  
...  

Abstract Background We aimed to define the clinical and variant spectrum and to provide novel molecular insights into the DHX30-associated neurodevelopmental disorder. Methods Clinical and genetic data from affected individuals were collected through Facebook-based family support group, GeneMatcher, and our network of collaborators. We investigated the impact of novel missense variants with respect to ATPase and helicase activity, stress granule (SG) formation, global translation, and their effect on embryonic development in zebrafish. SG formation was additionally analyzed in CRISPR/Cas9-mediated DHX30-deficient HEK293T and zebrafish models, along with in vivo behavioral assays. Results We identified 25 previously unreported individuals, ten of whom carry novel variants, two of which are recurrent, and provide evidence of gonadal mosaicism in one family. All 19 individuals harboring heterozygous missense variants within helicase core motifs (HCMs) have global developmental delay, intellectual disability, severe speech impairment, and gait abnormalities. These variants impair the ATPase and helicase activity of DHX30, trigger SG formation, interfere with global translation, and cause developmental defects in a zebrafish model. Notably, 4 individuals harboring heterozygous variants resulting either in haploinsufficiency or truncated proteins presented with a milder clinical course, similar to an individual harboring a de novo mosaic HCM missense variant. Functionally, we established DHX30 as an ATP-dependent RNA helicase and as an evolutionary conserved factor in SG assembly. Based on the clinical course, the variant location, and type we establish two distinct clinical subtypes. DHX30 loss-of-function variants cause a milder phenotype whereas a severe phenotype is caused by HCM missense variants that, in addition to the loss of ATPase and helicase activity, lead to a detrimental gain-of-function with respect to SG formation. Behavioral characterization of dhx30-deficient zebrafish revealed altered sleep-wake activity and social interaction, partially resembling the human phenotype. Conclusions Our study highlights the usefulness of social media to define novel Mendelian disorders and exemplifies how functional analyses accompanied by clinical and genetic findings can define clinically distinct subtypes for ultra-rare disorders. Such approaches require close interdisciplinary collaboration between families/legal representatives of the affected individuals, clinicians, molecular genetics diagnostic laboratories, and research laboratories.


2013 ◽  
Vol 93 (1) ◽  
pp. 124-131 ◽  
Author(s):  
Anne Gregor ◽  
Martin Oti ◽  
Evelyn N. Kouwenhoven ◽  
Juliane Hoyer ◽  
Heinrich Sticht ◽  
...  

2021 ◽  
Author(s):  
Ying Zhang ◽  
Yanyan Nie ◽  
Yu Mu ◽  
Jie Zheng ◽  
Xiaowei Xu ◽  
...  

Abstract Background:The pathogenic variation of CASK gene can cause CASK related mental disorders. The main clinical manifestations are microcephaly with pontine and cerebellar hypoplasia, X-linked mental disorders with or without nystagmus and FG syndrome. The main pathogenic mechanism is the loss of function of related protein caused by mutation. We reported a Chinese male newborn with a de novo variant in CASK gene. Case presentation:We present an 18-day-old baby with intellectual disability and brain hypoplasia. Whole-exome sequencing was performed, which detected a hemizygous missense mutation c.764G>A of CASK gene. The mutation changed the 255th amino acid from Arg to His. Software based bioinformatics analyses were conducted to infer its functional effect.Conclusions:In this paper, a de novo mutation of CASK gene was reported. Moreover, a detailed description of all the cases described in the literature is reported.CASK mutations cause a variety of clinical phenotypes. Its diagnosis is difficult due to the lack of typical clinical symptoms. Genetic testing should be performed as early as possible if this disease is suspected. This case provides an important reference for the diagnosis and treatment of future cases.


Sign in / Sign up

Export Citation Format

Share Document