Role of GABAergic inhibition in shaping the spatial frequency tuning of neurons and its contrast dependency in the dorsal lateral geniculate nucleus of cat

2013 ◽  
Vol 37 (8) ◽  
pp. 1270-1283 ◽  
Author(s):  
Akihiro Kimura ◽  
Satoshi Shimegi ◽  
Shin'ichiro Hara ◽  
Masahiro Okamoto ◽  
Hiromichi Sato
2003 ◽  
Vol 90 (6) ◽  
pp. 3594-3607 ◽  
Author(s):  
Matthew S. Grubb ◽  
Ian D. Thompson

We present a quantitative analysis of the visual response properties of single neurons in the dorsal lateral geniculate nucleus (dLGN) of wild-type C57Bl/6J mice. Extracellular recordings were made from single dLGN cells in mice under halothane and nitrous oxide anesthesia. After mapping the receptive fields (RFs) of these cells using reverse correlation of responses to flashed square stimuli, we used sinusoidal gratings to describe their linearity of spatial summation, spatial frequency tuning, temporal frequency tuning, and contrast response characteristics. All cells in our sample had RFs dominated by a single, roughly circular “center” mechanism that responded to either increases (on-center) or decreases (off-center) in stimulus luminance, and almost all cells passed a modified null test for linearity of spatial summation. A difference of Gaussians model was used to relate spatial frequency tuning to the spatial properties of cells' RFs, revealing that mouse dLGN cells have large RFs (center diameter approximately 11°) and correspondingly poor spatial resolution (approximately 0.2c/°). Temporally, most cells in the mouse dLGN respond best to stimuli of approximately 4 Hz. We looked for evidence of parallel processing in the mouse dLGN and found it only in a functional difference between on- and off-center cells: on-center cells were more sensitive to stimulus contrast than their off-center neighbors.


2009 ◽  
Vol 65 ◽  
pp. S106
Author(s):  
Akihiro Kimura ◽  
Satoshi Shimegi ◽  
Shin-ichiro Hara ◽  
Masahiro Okamoto ◽  
Hiromichi Sato

1994 ◽  
Vol 33 (11) ◽  
pp. 1413-1418 ◽  
Author(s):  
J. Cudeiro ◽  
K.L. Grieve ◽  
C. Rivadulla ◽  
R. Rodríguez ◽  
S. Martínez-Conde ◽  
...  

2010 ◽  
Vol 5 (8) ◽  
pp. 428-428
Author(s):  
R. A. Frazor ◽  
V. Mante ◽  
V. Bonin ◽  
M. Carandini

2005 ◽  
Vol 93 (6) ◽  
pp. 3224-3247 ◽  
Author(s):  
Matthew S. Grubb ◽  
Ian D. Thompson

Thalamic relay cells fire action potentials in two modes: burst and tonic. Previous studies in cats have shown that these two modes are associated with significant differences in the visual information carried by spikes in the dorsal lateral geniculate nucleus (dLGN). Here we describe the visual response properties of burst and tonic firing in the mouse dLGN. Extracellular recordings of activity in single geniculate cells were performed under halothane and nitrous oxide anesthesia in vivo. After confirming that the criteria used to isolate burst spikes from these recordings identify firing events with properties described for burst firing in other species and preparations, we show that burst firing in the mouse dLGN occurs during visual stimulation. We then compare burst and tonic firing across a wide range of visual response characteristics. While the two firing modes do not differ with respect to spatial summation or spatial frequency tuning, they show significant differences in the temporal domain. Burst spikes are phase advanced relative to their tonic counterparts. Burst firing is also more rectified, possesses sharper temporal frequency tuning, and prefers lower temporal frequencies than tonic firing. In addition, contrast-response curves are more step-like for burst responses. Finally, we present analyses that describe the stimulus detection abilities and spike timing reliability of burst and tonic firing.


Sign in / Sign up

Export Citation Format

Share Document