gabaa and gabab receptors
Recently Published Documents


TOTAL DOCUMENTS

95
(FIVE YEARS 7)

H-INDEX

28
(FIVE YEARS 1)

2021 ◽  
Vol 22 (20) ◽  
pp. 11254
Author(s):  
Athapaththu Mudiyanselage Gihan Kavinda Athapaththu ◽  
Ilandarage Menu Neelaka Molagoda ◽  
Rajapaksha Gedara Prasad Tharanga Jayasooriya ◽  
Yung Hyun Choi ◽  
You-Jin Jeon ◽  
...  

Insulin-like growth factor-1 (IGF-1) primarily increases the release of gamma-aminobutyric acid (GABA) in neurons; moreover, it is responsible for the promotion of longitudinal growth in children and adolescents. Therefore, in this study, we investigated whether exogenous GABA supplementation activates IGF-mediated growth performance. Zebrafish larvae treated with GABA at three days post fertilization (dpf) showed a significant increase in the total body length from 6 to 12 dpf through upregulation of growth-stimulating genes, including IGF-1, growth hormone-1 (GH-1), growth hormone receptor-1 (GHR-1), and cholecystokinin A (CCKA). In particular, at 9 dpf, GABA increased total body length from 3.60 ± 0.02 to 3.79 ± 0.03, 3.89 ± 0.02, and 3.92 ± 0.04 mm at concentrations of 6.25, 12.5, and 25 mM, and the effect of GABA at 25 mM was comparable to 4 mM β-glycerophosphate (GP)-treated larvae (3.98 ± 0.02 mm). Additionally, the highest concentration of GABA (50 mM) -induced death in 50% zebrafish larvae at 12 dpf. GABA also enhanced IGF-1 expression and secretion in preosteoblast MC3T3-E1 cells, concomitant with high levels of the IGF-1 receptor gene (IGF-1R). In zebrafish larvae, the GABA-induced growth rate was remarkably decreased in the presence of an IGF-1R inhibitor, picropodophyllin (PPP), which indicates that GABA-induced IGF-1 enhances growth rate via IGF-1R. Furthermore, we investigated the effect of GABA receptors on growth performance along with IGF-1 activation. Inhibitors of GABAA and GABAB receptors, namely bicuculline and CGP 46381, respectively, considerably inhibited GABA-induced growth rate in zebrafish larvae accompanied by a marked decrease in the expression of growth-stimulating genes, including IGF-1, GH-1, GHR-1, and CCKA, but not with an inhibitor of GABAC receptor, TPMPA. Additionally, IGF-1 and IGF-1R expression was impaired in bicuculline and CGP 46381-treated MC3T3-E1 cells, but not in the cells treated with TPMPA. Furthermore, treatment with bicuculline and CGP 46381 significantly downregulated GABA-induced IGF-1 release in MC3T3-E1 cells. These data indicate that GABA stimulates IGF-1 release via GABAA and GABAB receptors and leads to growth promotion performance via IGF-1R.


Author(s):  
Esther Luquin ◽  
Beatriz Paternain ◽  
Inés Zugasti ◽  
Carmen Santomá ◽  
Elisa Mengual

AbstractTo better understand GABAergic transmission at two targets of basal ganglia downstream projections, the pedunculopontine (PPN) and laterodorsal (LDT) tegmental nuclei, the anatomical localization of GABAA and GABAB receptors was investigated in both nuclei. Specifically, the total number of neurons expressing the GABAA receptor γ2 subunit (GABAAR γ2) and the GABAB receptor R2 subunit (GABAB R2) in PPN and LDT was estimated using stereological methods, and the neurochemical phenotype of cells expressing each subunit was also determined. The mean number of non-cholinergic cells expressing GABAAR γ2 was 9850 ± 1856 in the PPN and 8285 ± 962 in the LDT, whereas those expressing GABAB R2 were 7310 ± 1970 and 9170 ± 1900 in the PPN and LDT, respectively. In addition, all cholinergic neurons in both nuclei co-expressed GABAAR γ2 and 95–98% of them co-expressed GABAB R2. Triple labeling using in situ hybridization revealed that 77% of GAD67 mRNA-positive cells in the PPT and 49% in the LDT expressed GABAAR γ2, while 90% (PPN) and 65% (LDT) of Vglut2 mRNA-positive cells also expressed GABAAR γ2. In contrast, a similar proportion (~2/3) of glutamatergic and GABAergic cells co-expressed GABAB R2 in both nuclei. The heterogeneous distribution of GABAAR and GABABR among non-cholinergic cells in PPN and LDT may give rise to physiological differences within each neurochemical subpopulation. In addition, the dissimilar proportion of GABAAR γ2-expressing glutamatergic and GABAergic neurons in the PPN and LDT may contribute to some of the functional differences found between the two nuclei.


2021 ◽  
Vol 22 (15) ◽  
pp. 8257
Author(s):  
Ilandarage Menu Neelaka Molagoda ◽  
Mirissa Hewage Dumindu Kavinda ◽  
Hyung Won Ryu ◽  
Yung Hyun Choi ◽  
Jin-Woo Jeong ◽  
...  

Gamma-aminobutyric acid (GABA) is considered the primary inhibitory neurotransmitter in the human cortex. However, whether GABA regulates melanogenesis has not been comprehensively elucidated. In this study, we reveal that GABA (20 mM) significantly inhibited α-melanocyte-stimulating hormone (α-MSH)-induced extracellular (from 354.9% ± 28.4% to 126.5% ± 16.0%) and intracellular melanin contents (from 236.7% ± 11.1% to 102.7% ± 23.1%) in B16F10 melanoma cells, without inducing cytotoxicity. In addition, α-MSH-induced hyperpigmentation in zebrafish larvae was inhibited from 246.3% ± 5.4% to 116.3% ± 3.1% at 40 mM GABA, displaying no apparent cardiotoxicity. We also clarify that the GABA-mediated antimelanogenic properties were related to the direct inhibition of microphthalmia-associated transcription factor (MITF) and tyrosinase expression by inhibiting cyclic adenosine monophosphate (cAMP) and cAMP response element-binding protein (CREB). Furthermore, under α-MSH stimulation, GABA-related antimelanogenic effects were mediated through the GABAA and GABAB receptors, with subsequent inhibition of Ca2+ accumulation. In B16F10 melanoma cells and zebrafish larvae, pretreatment with bicuculline, a GABAA receptor antagonist, and CGP 46381, a GABAB receptor antagonist, reversed the antimelanogenic effect of GABA following α-MSH treatment by upregulating Ca2+ accumulation. In conclusion, our results indicate that GABA inhibits α-MSH-induced melanogenesis. Hence, in addition to the health benefits of GABA in the central nervous system, it could ameliorate hyperpigmentation disorders.


Cells ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 709
Author(s):  
Bradley M. Roberts ◽  
Emanuel F. Lopes ◽  
Stephanie J. Cragg

Striatal dopamine (DA) release is critical for motivated actions and reinforcement learning, and is locally influenced at the level of DA axons by other striatal neurotransmitters. Here, we review a wealth of historical and more recently refined evidence indicating that DA output is inhibited by striatal γ-aminobutyric acid (GABA) acting via GABAA and GABAB receptors. We review evidence supporting the localisation of GABAA and GABAB receptors to DA axons, as well as the identity of the striatal sources of GABA that likely contribute to GABAergic modulation of DA release. We discuss emerging data outlining the mechanisms through which GABAA and GABAB receptors inhibit the amplitude as well as modulate the short-term plasticity of DA release. Furthermore, we highlight recent data showing that DA release is governed by plasma membrane GABA uptake transporters on striatal astrocytes, which determine ambient striatal GABA tone and, by extension, the tonic inhibition of DA release. Finally, we discuss how the regulation of striatal GABA-DA interactions represents an axis for dysfunction in psychomotor disorders associated with dysregulated DA signalling, including Parkinson’s disease, and could be a novel therapeutic target for drugs to modify striatal DA output.


2019 ◽  
Vol 35 (4) ◽  
pp. 1433-1442
Author(s):  
Manal Ahmad Abbas ◽  
Sahar Majdi Jaffal ◽  
Belal Omar Al-Najjar

Achillea biebersteinii (Asteraceae) is used in traditional medicine for treating abdominal pain, menstrual pain and headache. The analgesic, antidepressant and anxiolytic activities of this plant were studied. Moreover, molecular docking technique was used for plant constituents to determine their energy of binding against GABAA and GABAB receptors. A. biebersteinii decreased flinching in early and late phases of formalin test and increased the time in hot plate test. In forced swimming test, no difference in immobility time was found. In open field test, high doses decreased the crossed lines number and rearing behavior. A. biebersteinii increased the time that the animals spent in the open arm side of elevated plus maze apparatus. Both bicuculline and SCH 50911 reversed A. biebersteinii action. Lavndulyl-2-methylbutanoate and sesquisabinene hydrate, showed the lowest binding energies for both GABAA and GABAB receptors. In conclusion, A. biebersteinii exerted analgesic, anxiolytic but no antidepressant activity. Its effect involved interaction with GABAA and GABAB systems.


2019 ◽  
Vol 699 ◽  
pp. 189-194 ◽  
Author(s):  
Bruna B. de Paula ◽  
Jeanne R. de Melo ◽  
Christie R.A. Leite-Panissi

2018 ◽  
Vol 39 (6) ◽  
pp. 1058-1065 ◽  
Author(s):  
Emanuel F. Lopes ◽  
Bradley M. Roberts ◽  
Ruth E. Siddorn ◽  
Michael A. Clements ◽  
Stephanie J. Cragg

2018 ◽  
Vol 1678 ◽  
pp. 164-173 ◽  
Author(s):  
Mohaddeseh Ebrahimi-Ghiri ◽  
Masoumeh Rostampour ◽  
Mehdi Jamshidi-Mehr ◽  
Mohammad Nasehi ◽  
Mohammad-Reza Zarrindast

Sign in / Sign up

Export Citation Format

Share Document