gabab receptors
Recently Published Documents


TOTAL DOCUMENTS

815
(FIVE YEARS 76)

H-INDEX

76
(FIVE YEARS 4)

2021 ◽  
Vol 22 (22) ◽  
pp. 12138
Author(s):  
Huaixing Wang ◽  
Julie S. Haas

Two distinct types of neuronal activity result in long-term depression (LTD) of electrical synapses, with overlapping biochemical intracellular signaling pathways that link activity to synaptic strength, in electrically coupled neurons of the thalamic reticular nucleus (TRN). Because components of both signaling pathways can also be modulated by GABAB receptor activity, here we examined the impact of GABAB receptor activation on the two established inductors of LTD in electrical synapses. Recording from patched pairs of coupled rat neurons in vitro, we show that GABAB receptor inactivation itself induces a modest depression of electrical synapses and occludes LTD induction by either paired bursting or metabotropic glutamate receptor (mGluR) activation. GABAB activation also occludes LTD from either paired bursting or mGluR activation. Together, these results indicate that afferent sources of GABA, such as those from the forebrain or substantia nigra to the reticular nucleus, gate the induction of LTD from either neuronal activity or afferent glutamatergic receptor activation. These results add to a growing body of evidence that the regulation of thalamocortical transmission and sensory attention by TRN is modulated and controlled by other brain regions. Significance: We show that electrical synapse plasticity is gated by GABAB receptors in the thalamic reticular nucleus. This effect is a novel way for afferent GABAergic input from the basal ganglia to modulate thalamocortical relay and is a possible mediator of intra-TRN inhibitory effects.


Author(s):  
Armin Aryannejad ◽  
Mohammadreza Tabary ◽  
Nafise Noroozi ◽  
Baharnaz Mashinchi ◽  
Setare Iranshahi ◽  
...  

2021 ◽  
Vol 22 (20) ◽  
pp. 11254
Author(s):  
Athapaththu Mudiyanselage Gihan Kavinda Athapaththu ◽  
Ilandarage Menu Neelaka Molagoda ◽  
Rajapaksha Gedara Prasad Tharanga Jayasooriya ◽  
Yung Hyun Choi ◽  
You-Jin Jeon ◽  
...  

Insulin-like growth factor-1 (IGF-1) primarily increases the release of gamma-aminobutyric acid (GABA) in neurons; moreover, it is responsible for the promotion of longitudinal growth in children and adolescents. Therefore, in this study, we investigated whether exogenous GABA supplementation activates IGF-mediated growth performance. Zebrafish larvae treated with GABA at three days post fertilization (dpf) showed a significant increase in the total body length from 6 to 12 dpf through upregulation of growth-stimulating genes, including IGF-1, growth hormone-1 (GH-1), growth hormone receptor-1 (GHR-1), and cholecystokinin A (CCKA). In particular, at 9 dpf, GABA increased total body length from 3.60 ± 0.02 to 3.79 ± 0.03, 3.89 ± 0.02, and 3.92 ± 0.04 mm at concentrations of 6.25, 12.5, and 25 mM, and the effect of GABA at 25 mM was comparable to 4 mM β-glycerophosphate (GP)-treated larvae (3.98 ± 0.02 mm). Additionally, the highest concentration of GABA (50 mM) -induced death in 50% zebrafish larvae at 12 dpf. GABA also enhanced IGF-1 expression and secretion in preosteoblast MC3T3-E1 cells, concomitant with high levels of the IGF-1 receptor gene (IGF-1R). In zebrafish larvae, the GABA-induced growth rate was remarkably decreased in the presence of an IGF-1R inhibitor, picropodophyllin (PPP), which indicates that GABA-induced IGF-1 enhances growth rate via IGF-1R. Furthermore, we investigated the effect of GABA receptors on growth performance along with IGF-1 activation. Inhibitors of GABAA and GABAB receptors, namely bicuculline and CGP 46381, respectively, considerably inhibited GABA-induced growth rate in zebrafish larvae accompanied by a marked decrease in the expression of growth-stimulating genes, including IGF-1, GH-1, GHR-1, and CCKA, but not with an inhibitor of GABAC receptor, TPMPA. Additionally, IGF-1 and IGF-1R expression was impaired in bicuculline and CGP 46381-treated MC3T3-E1 cells, but not in the cells treated with TPMPA. Furthermore, treatment with bicuculline and CGP 46381 significantly downregulated GABA-induced IGF-1 release in MC3T3-E1 cells. These data indicate that GABA stimulates IGF-1 release via GABAA and GABAB receptors and leads to growth promotion performance via IGF-1R.


Biomolecules ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1537
Author(s):  
Tzu-Yu Lin ◽  
Cheng-Wei Lu ◽  
Pei-Wen Hsieh ◽  
Kuan-Ming Chiu ◽  
Ming-Yi Lee ◽  
...  

Reduction in glutamate release is a key mechanism for neuroprotection and we investigated the effect of isoliquiritigenin (ISL), an active ingredient of Glycyrrhiza with neuroprotective activities, on glutamate release in rat cerebrocortical nerve terminals (synaptosomes). ISL produced a concentration-dependent inhibition of glutamate release and reduced the intraterminal [Ca2+] increase. The inhibition of glutamate release by ISL was prevented after removing extracellular Ca2+ or blocking P/Q-type Ca2+ channels. This inhibition was mediated through the γ-aminobutyric acid type B (GABAB) receptors because ISL was unable to inhibit glutamate release in the presence of baclofen (an GABAB agonist) or CGP3548 (an GABAB antagonist) and docking data revealed that ISL interacted with GABAB receptors. Furthermore, the ISL inhibition of glutamate release was abolished through the inhibition of Gi/o-mediated responses or Gβγ subunits, but not by 8-bromoadenosine 3′, 5′-cyclic monophosphate or adenylate cyclase inhibition. The ISL inhibition of glutamate release was also abolished through the inhibition of protein kinase C (PKC), and ISL decreased the phosphorylation of PKC. Thus, we inferred that ISL, through GABAB receptor activation and Gβγ-coupled inhibition of P/Q-type Ca2+ channels, suppressed the PKC phosphorylation to cause a decrease in evoked glutamate release at rat cerebrocortical nerve terminals.


Author(s):  
Nídia de Sousa ◽  
Andreia Pinho ◽  
Susana Monteiro ◽  
Valentina Liberato ◽  
Diogo Santos ◽  
...  

Spinal cord injury (SCI) leads to severe motor and sensory functional impairments that affect personal and social behaviors. With no effective treatment, deficits in motor function are the most visible consequence of SCI. However, other complications produce a significant impact on SCI patient’s welfare. Spasticity is a neurological impairment that affects the control of muscle tone as a consequence of an insult in the central nervous system (e.g., SCI). Baclofen, a GABA agonist, is the most effective drug for spasticity treatment. This drug activates GABAB receptors decreasing the neurotransmitters release and neuronal hyperpolarization, which results in spasticity relief. Interestingly, emerging data reveals that Baclofen can also play a role on neuroprotection and regeneration after SCI. Our goal is to highlight the role of Baclofen as a potential treatment to promote recovery from SCI. We used a compression SCI mouse model with the administration of Baclofen at different time-points after injury. Our data showed that Baclofen is more effective when a single dose is administered acutely, leading to locomotor improvements in mice. Moreover, Baclofen administration also led to improved bladder function control in all experimental groups. Interestingly, acute Baclofen administration modulates microglia activation state and levels of circulating cytokines, suggesting a role of Baclofen in the modulation of the immune response. Although deeper studies must be performed to understand the cellular/molecular mechanisms that underlie the functional improvements produced by Baclofen, our data shed light into the pharmacological potential of Baclofen to promote recovery in a SCI context.


Author(s):  
Esther Luquin ◽  
Beatriz Paternain ◽  
Inés Zugasti ◽  
Carmen Santomá ◽  
Elisa Mengual

AbstractTo better understand GABAergic transmission at two targets of basal ganglia downstream projections, the pedunculopontine (PPN) and laterodorsal (LDT) tegmental nuclei, the anatomical localization of GABAA and GABAB receptors was investigated in both nuclei. Specifically, the total number of neurons expressing the GABAA receptor γ2 subunit (GABAAR γ2) and the GABAB receptor R2 subunit (GABAB R2) in PPN and LDT was estimated using stereological methods, and the neurochemical phenotype of cells expressing each subunit was also determined. The mean number of non-cholinergic cells expressing GABAAR γ2 was 9850 ± 1856 in the PPN and 8285 ± 962 in the LDT, whereas those expressing GABAB R2 were 7310 ± 1970 and 9170 ± 1900 in the PPN and LDT, respectively. In addition, all cholinergic neurons in both nuclei co-expressed GABAAR γ2 and 95–98% of them co-expressed GABAB R2. Triple labeling using in situ hybridization revealed that 77% of GAD67 mRNA-positive cells in the PPT and 49% in the LDT expressed GABAAR γ2, while 90% (PPN) and 65% (LDT) of Vglut2 mRNA-positive cells also expressed GABAAR γ2. In contrast, a similar proportion (~2/3) of glutamatergic and GABAergic cells co-expressed GABAB R2 in both nuclei. The heterogeneous distribution of GABAAR and GABABR among non-cholinergic cells in PPN and LDT may give rise to physiological differences within each neurochemical subpopulation. In addition, the dissimilar proportion of GABAAR γ2-expressing glutamatergic and GABAergic neurons in the PPN and LDT may contribute to some of the functional differences found between the two nuclei.


2021 ◽  
Vol 14 ◽  
Author(s):  
Mohammad Hleihil ◽  
Markus Vaas ◽  
Musadiq A. Bhat ◽  
Karthik Balakrishnan ◽  
Dietmar Benke

One important function of GABAB receptors is the control of neuronal activity to prevent overexcitation and thereby excitotoxic death, which is a hallmark of cerebral ischemia. Consequently, sustained activation of GABAB receptors with the selective agonist baclofen provides neuroprotection in in vitro and in vivo models of cerebral ischemia. However, excitotoxic conditions severely downregulate the receptors, which would compromise the neuroprotective effectiveness of baclofen. On the other hand, recent work suggests that sustained activation of GABAB receptors stabilizes receptor expression. Therefore, we addressed the question whether sustained activation of GABAB receptors reduces downregulation of the receptor under excitotoxic conditions and thereby preserves GABAB receptor-mediated inhibition. In cultured neurons subjected to oxygen and glucose deprivation (OGD), to mimic cerebral ischemia, GABAB receptors were severely downregulated. Treatment of the cultures with baclofen after OGD restored GABAB receptor expression and reduced loss of neurons. Restoration of GABAB receptors was due to enhanced fast recycling of the receptors, which reduced OGD-induced sorting of the receptors to lysosomal degradation. Utilizing the middle cerebral artery occlusion (MCAO) mouse model of cerebral ischemia, we verified the severe downregulation of GABAB receptors in the affected cortex and a partial restoration of the receptors after systemic injection of baclofen. Restored receptor expression recovered GABAB receptor-mediated currents, normalized the enhanced neuronal excitability observed after MCAO and limited progressive loss of neurons. These results suggest that baclofen-induced restoration of GABAB receptors provides the basis for the neuroprotective activity of baclofen after an ischemic insult. Since GABAB receptors regulate multiple beneficial pathways, they are promising targets for a neuroprotective strategy in acute cerebral ischemia.


2021 ◽  
Vol 19 ◽  
Author(s):  
Massimo Avoli ◽  
Maxime Lévesque

: GABA, the key inhibitory neurotransmitter in the adult forebrain, activates pre- and postsynaptic receptors that have been categorized as GABAA, which directly open ligand-gated (or receptor-operated) ion-channels, and GABAB, which are metabotropic since they operate through second messengers. Over the last three decades, several studies have addressed the role of GABAB receptors in the pathophysiology of generalized and focal epileptic disorders. Here, we will address their involvement in focal epileptic disorders by mainly reviewing in vitro studies that have shown: (i) how either enhancing or decreasing GABAB receptor function can favour epileptiform synchronization and thus ictogenesis, although with different features; (ii) the surprising ability of GABAB receptor antagonism to disclose ictal-like activity when excitatory ionotropic transmission is abolished; and (iii) their contribution to control seizure-like discharges during repetitive electrical stimuli delivered in limbic structures. In spite of this evidence, the role of GABAB receptor function in focal epileptic disorders has been attracting less interest when compared to the numerous studies that have addressed GABAA receptor signaling. Therefore, a main aim of our mini-review is to revive interest in the function of GABAB receptors in focal epilepsy research.


Sign in / Sign up

Export Citation Format

Share Document