scholarly journals Cascading effects from plants to soil microorganisms explain how plant species richness and simulated climate change affect soil multifunctionality

2018 ◽  
Vol 24 (12) ◽  
pp. 5642-5654 ◽  
Author(s):  
Enrique Valencia ◽  
Nicolas Gross ◽  
José L. Quero ◽  
Carlos P. Carmona ◽  
Victoria Ochoa ◽  
...  
2017 ◽  
Vol 105 (5) ◽  
pp. 1199-1209 ◽  
Author(s):  
Marion Boutin ◽  
Emmanuel Corcket ◽  
Didier Alard ◽  
Luis Villar ◽  
Juan-José Jiménez ◽  
...  

2010 ◽  
Vol 277 (1692) ◽  
pp. 2271-2280 ◽  
Author(s):  
Jan Henning Sommer ◽  
Holger Kreft ◽  
Gerold Kier ◽  
Walter Jetz ◽  
Jens Mutke ◽  
...  

Climate change represents a major challenge to the maintenance of global biodiversity. To date, the direction and magnitude of net changes in the global distribution of plant diversity remain elusive. We use the empirical multi-variate relationships between contemporary water-energy dynamics and other non-climatic predictor variables to model the regional capacity for plant species richness (CSR) and its projected future changes. We find that across all analysed Intergovernmental Panel on Climate Change emission scenarios, relative changes in CSR increase with increased projected temperature rise. Between now and 2100, global average CSR is projected to remain similar to today (+0.3%) under the optimistic B1/+1.8°C scenario, but to decrease significantly (−9.4%) under the ‘business as usual’ A1FI/+4.0°C scenario. Across all modelled scenarios, the magnitude and direction of CSR change are geographically highly non-uniform. While in most temperate and arctic regions, a CSR increase is expected, the projections indicate a strong decline in most tropical and subtropical regions. Countries least responsible for past and present greenhouse gas emissions are likely to incur disproportionately large future losses in CSR, whereas industrialized countries have projected moderate increases. Independent of direction, we infer that all changes in regional CSR will probably induce on-site species turnover and thereby be a threat to native floras.


2014 ◽  
Vol 10 (10) ◽  
pp. 20140673 ◽  
Author(s):  
Juan J. Gaitán ◽  
Donaldo Bran ◽  
Gabriel Oliva ◽  
Fernando T. Maestre ◽  
Martín R. Aguiar ◽  
...  

Drought is an increasingly common phenomenon in drylands as a consequence of climate change. We used 311 sites across a broad range of environmental conditions in Patagonian rangelands to evaluate how drought severity and temperature (abiotic factors) and vegetation structure (biotic factors) modulate the impact of a drought event on the annual integral of normalized difference vegetation index (NDVI-I), our surrogate of ecosystem functioning. We found that NDVI-I decreases were larger with both increasing drought severity and temperature. Plant species richness (SR) and shrub cover (SC) attenuated the effects of drought on NDVI-I. Grass cover did not affect the impacts of drought on NDVI-I. Our results suggest that warming and species loss, two important imprints of global environmental change, could increase the vulnerability of Patagonian ecosystems to drought. Therefore, maintaining SR through appropriate grazing management can attenuate the adverse effects of climate change on ecosystem functioning.


Sign in / Sign up

Export Citation Format

Share Document