Backfitting Estimation for Geographically Weighted Regression Models with Spatial Autocorrelation in the Response

2021 ◽  
Author(s):  
Feng Chen ◽  
Yee Leung ◽  
Chang‐Lin Mei ◽  
Tung Fung
2014 ◽  
Vol 5 (4) ◽  
pp. 54-71
Author(s):  
Hilton A. Cordoba ◽  
Russell L. Ivy

Modeling airline fares is quite challenging due to the constantly changing fare structure of the airlines in response to competitors, yield management principles, and a variety of political and economic changes, and has become more complex since deregulation. This paper attempts to add to the literature by providing a more in-depth look at fare structure using a multivariate approach. A total 6,200 routes between 80 primary U.S. airports are analyzed using linear and geographically weighted regression models. The results from the global models reinforce some of the expectations mentioned in the literature, while the local models provide an opportunity to analyze the spatial variation of influencing factors and predictability.


PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e7350
Author(s):  
Changdong Liu ◽  
Junchao Liu ◽  
Yan Jiao ◽  
Yanli Tang ◽  
Kevin B. Reid

Background Global regression models under an implicit assumption of spatial stationarity were commonly applied to estimate the environmental effects on aquatic species distribution. However, the relationships between species distribution and environmental variables may change among spatial locations, especially at large spatial scales with complicated habitat. Local regression models are appropriate supplementary tools to explore species-environment relationships at finer scales. Method We applied geographically weighted regression (GWR) models on Yellow Perch in Lake Erie to estimate spatially-varying environmental effects on the presence probabilities of this species. Outputs from GWR were compared with those from generalized additive models (GAMs) in exploring the Yellow Perch distribution. Local regression coefficients from the GWR were mapped to visualize spatially-varying species-environment relationships. K-means cluster analyses based on the t-values of GWR local regression coefficients were used to characterize the distinct zones of ecological relationships. Results Geographically weighted regression resulted in a significant improvement over the GAM in goodness-of-fit and accuracy of model prediction. Results from the GWR revealed the magnitude and direction of environmental effects on Yellow Perch distribution changed among spatial locations. Consistent species-environment relationships were found in the west and east basins for adults. The different kinds of species-environment relationships found in the central management unit (MU) implied the variation of relationships at a scale finer than the MU. Conclusions This study draws attention to the importance of accounting for spatial nonstationarity in exploring species-environment relationships. The GWR results can provide support for identification of unique stocks and potential refinement of the current jurisdictional MU structure toward more ecologically relevant MUs for the sustainable management of Yellow Perch in Lake Erie.


2019 ◽  
Author(s):  
Ziqi Li ◽  
Alexander Stewart Fotheringham ◽  
Taylor M. Oshan ◽  
Levi John Wolf

Bandwidth, a key parameter in geographically weighted regression models, is closely related to the spatial scale at which the underlying spatially heterogeneous processes being examined take place. Generally, a single optimal bandwidth (geographically weighted regression) or a set of covariate-specific optimal bandwidths (multiscale geographically weighted regression) is chosen based on some criterion such as the Akaike Information Criterion (AIC) and then parameter estimation and inference are conditional on the choice of this bandwidth. In this paper, we find that bandwidth selection is subject to uncertainty in both single-scale and multi-scale geographically weighted regression models and demonstrate that this uncertainty can be measured and accounted for. Based on simulation studies and an empirical example of obesity rates in Phoenix, we show that bandwidth uncertainties can be quantitatively measured by Akaike weights, and confidence intervals for bandwidths can be obtained. Understanding bandwidth uncertainty offers important insights about the scales over which different processes operate, especially when comparing covariate-specific bandwidths. Additionally, unconditional parameter estimates can be computed based on Akaike weights accounts for bandwidth selection uncertainty.


Sign in / Sign up

Export Citation Format

Share Document