spatially varying
Recently Published Documents


TOTAL DOCUMENTS

1968
(FIVE YEARS 545)

H-INDEX

70
(FIVE YEARS 12)

2022 ◽  
Vol 11 (1) ◽  
pp. 67
Author(s):  
Meijie Chen ◽  
Yumin Chen ◽  
John P. Wilson ◽  
Huangyuan Tan ◽  
Tianyou Chu

The COVID-19 pandemic has led to many deaths and economic disruptions across the world. Several studies have examined the effect of corresponding health risk factors in different places, but the problem of spatial heterogeneity has not been adequately addressed. The purpose of this paper was to explore how selected health risk factors are related to the pandemic infection rate within different study extents and to reveal the spatial varying characteristics of certain health risk factors. An eigenvector spatial filtering-based spatially varying coefficient model (ESF-SVC) was developed to find out how the influence of selected health risk factors varies across space and time. The ESF-SVC was able to take good control of over-fitting problems compared with ordinary least square (OLS), eigenvector spatial filtering (ESF) and geographically weighted regression (GWR) models, with a higher adjusted R2 and lower cross validation RMSE. The impact of health risk factors varied as the study extent changed: In Hubei province, only population density and wind speed showed significant spatially constant impact; while in mainland China, other factors including migration score, building density, temperature and altitude showed significant spatially varying impact. The influence of migration score was less contributive and less significant in cities around Wuhan than cities further away, while altitude showed a stronger contribution to the decrease of infection rates in high altitude cities. The temperature showed mixed correlation as time passed, with positive and negative coefficients at 2.42 °C and 8.17 °C, respectively. This study could provide a feasible path to improve the model fit by considering the problem of spatial autocorrelation and heterogeneity that exists in COVID-19 modeling. The yielding ESF-SVC coefficients could also provide an intuitive method for discovering the different impacts of influencing factors across space in large study areas. It is hoped that these findings improve public and governmental awareness of potential health risks and therefore influence epidemic control strategies.


Abstract Snow is a fundamental component of global and regional water budgets, particularly in mountainous areas and regions downstream that rely on snowmelt for water resources. Land surface models (LSMs) are commonly used to develop spatially distributed estimates of snow water equivalent (SWE) and runoff. However, LSMs are limited by uncertainties in model physics and parameters, among other factors. In this study, we describe the use of model calibration tools to improve snow simulations within the Noah-MP LSM as the first step in an Observing System Simulation Experiment (OSSE). Noah-MP is calibrated against the University of Arizona (UA) SWE product over a Western Colorado domain. With spatially varying calibrated parameters, we run calibrated and default Noah-MP simulations for water years 2010-2020. By evaluating both simulations against the UA dataset, we show that calibration decreases domain averaged temporal RMSE and bias for snow depth from 0.15 to 0.13 m and from -0.036 to -0.0023 m, respectively, and improves the timing of snow ablation. Increased snow simulation performance also improves estimates of model-simulated runoff in four of six study basins, though only one has statistically significant improvement. Spatially distributed Noah-MP snow parameters perform better than default uniform values. We demonstrate that calibrating variables related to snow albedo calculations and rain-snow partitioning, among other processes, is a necessary step for creating a nature run that reasonably approximates true snow conditions for the OSSEs. Additionally, the inclusion of a snowfall scaling term can address biases in precipitation from meteorological forcing datasets, further improving the utility of LSMs for generating reliable spatiotemporal estimates of snow.


Author(s):  
Joy Mukherjee ◽  
Dipak Bhowmik ◽  
Gaurab Bhattacharjee ◽  
Biswarup Satpati ◽  
Prasanta Karmakar

Abstract We report mixed (CO+ and N2+) ion beam induced spatially varying chemical phases formation on Si (100) surface in nanometer length scale. Simultaneous bombardment of carbon, oxygen and nitrogen like three reactive ions leads to well-defined ripple development and spatially varying periodic chemical phases formation. Post bombardment chemical changes of Si surface are investigated by X-ray Photoelectron Spectroscopy (XPS), and spatially resolved periodic variation of chemical phases are confirmed by Electron Energy Loss Spectroscopy (EELS). The thickness of ion modified amorphous layer, estimated by Monte Carlo Simulation (SRIM), is in excellent agreement with the cross-sectional Transmission Electron Microscopy measurements. The formation of such periodic nanoscale ripple having multiple chemical phases at different parts is explained in terms of chemical instability, local ion flux variation and difference in sputtering yield. Potential applications of such newly developed nano material are also addressed.


2022 ◽  
Vol 158 (1) ◽  
Author(s):  
Jakob A. Dambon ◽  
Stefan S. Fahrländer ◽  
Saira Karlen ◽  
Manuel Lehner ◽  
Jaron Schlesinger ◽  
...  

AbstractThis article examines the spatially varying effect of age on single-family house (SFH) prices. Age has been shown to be a key driver for house depreciation and is usually associated with a negative price effect. In practice, however, there exist deviations from this behavior which are referred to as vintage effects. We estimate a spatially varying coefficients (SVC) model to investigate the spatial structures of vintage effects on SFH pricing. For SFHs in the Canton of Zurich, Switzerland, we find substantial spatial variation in the age effect. In particular, we find a local, strong vintage effect primarily in urban areas compared to pure depreciative age effects in rural locations. Using cross validation, we assess the potential improvement in predictive performance by incorporating spatially varying vintage effects in hedonic models. We find a substantial improvement in out-of-sample predictive performance of SVC models over classical spatial hedonic models.


2022 ◽  
Vol 119 (1) ◽  
pp. e2111505119
Author(s):  
Jan-Hendrik Bastek ◽  
Siddhant Kumar ◽  
Bastian Telgen ◽  
Raphaël N. Glaesener ◽  
Dennis M. Kochmann

Inspired by crystallography, the periodic assembly of trusses into architected materials has enjoyed popularity for more than a decade and produced countless cellular structures with beneficial mechanical properties. Despite the successful and steady enrichment of the truss design space, the inverse design has remained a challenge: While predicting effective truss properties is now commonplace, efficiently identifying architectures that have homogeneous or spatially varying target properties has remained a roadblock to applications from lightweight structures to biomimetic implants. To overcome this gap, we propose a deep-learning framework, which combines neural networks with enforced physical constraints, to predict truss architectures with fully tailored anisotropic stiffness. Trained on millions of unit cells, it covers an enormous design space of topologically distinct truss lattices and accurately identifies architectures matching previously unseen stiffness responses. We demonstrate the application to patient-specific bone implants matching clinical stiffness data, and we discuss the extension to spatially graded cellular structures with locally optimal properties.


Sign in / Sign up

Export Citation Format

Share Document