Egg‐laying traits reflect shifts in dragonfly assemblages in response to different amount of tropical forest cover

2018 ◽  
Vol 12 (3) ◽  
pp. 231-240 ◽  
Author(s):  
Marciel Elio Rodrigues ◽  
Fabio De Oliveira Roque ◽  
Rhainer Guillermo‐Ferreira ◽  
Victor S. Saito ◽  
Michael J. Samways
2015 ◽  
Author(s):  
Madhava Meegaskumbura ◽  
Nayana Wijayathilaka ◽  
Nirodha Abayalath ◽  
Gayani Senevirathne

Endemic to Sri Lanka, genus Adenomus contains two torrent-associated toad species whose ecology and natural history in the wild is virtually unknown. Adenomus kelaartii is relatively common, with a wide geographic distribution. Its sister species, A. kandianus, however, is restricted to two isolated populations in fast-disappearing montane and sub-montane forests. Formally declared extinct after not being recorded for over a century, a few A. kandianus were rediscovered in 2012 and redescribed as "the world's rarest toad". Here we report the results of a two-year study of the occurrence, habits and habitat associations of adult and larval A. kandianus using both general surveys and quadrat sampling. We show this to be a secretive species with a patchy distribution. Non-breeding female toads dwell in primary-forest habitats, but after heavy and sudden downpours they form large mating congregations in large streams. Amplexed pairs swim synchronously, enabling them to traverse fast currents. Egg-laying sites remain unknown, but the ability to dive and vocalize underwater, and characteristics of the eggs, suggest that they lay eggs in dark recesses of the stream. Tadpoles show microhabitat partitioning within the stream, with the greatest diversity of stages in slow-flowing rocky areas. The more robust stages possessing sucker discs exploit rocky-rapids, while metamorphic stages inhabit stream margins. We use DNA-barcoding to show the existence of two disparate toad populations. Distribution modeling with forest-cover layers added, predict a very small remaining area of suitable habitats. Conservation of this climatically and ecologically restricted species hinge largely on the preservation of high-elevation primary and riparian forests and unpolluted torrents.


2005 ◽  
Vol 360 (1454) ◽  
pp. 373-384 ◽  
Author(s):  
Philippe Mayaux ◽  
Peter Holmgren ◽  
Frédéric Achard ◽  
Hugh Eva ◽  
Hans-Jürgen Stibig ◽  
...  

Despite the importance of the world's humid tropical forests, our knowledge concerning their rates of change remains limited. Two recent programmes (FAO 2000 Forest Resources Assessment and TREES II), exploiting the global imaging capabilities of Earth observing satellites, have recently been completed to provide information on the dynamics of tropical forest cover. The results from these independent studies show a high degree of conformity and provide a good understanding of trends at the pan-tropical level. In 1990 there were some 1150 million ha of tropical rain forest with the area of the humid tropics deforested annually estimated at 5.8 million ha (approximately twice the size of Belgium). A further 2.3 million ha of humid forest is apparently degraded annually through fragmentation, logging and/or fires. In the sub-humid and dry tropics, annual deforestation of tropical moist deciduous and tropical dry forests comes to 2.2 and 0.7 million ha, respectively. Southeast Asia is the region where forests are under the highest pressure with an annual change rate of −0.8 to −0.9%. The annual area deforested in Latin America is large, but the relative rate (−0.4 to −0.5%) is lower, owing to the vast area covered by the remaining Amazonian forests. The humid forests of Africa are being converted at a similar rate to those of Latin America (−0.4 to −0.5% per year). During this period, secondary forests have also been established, through re-growth on abandoned land and forest plantations, but with different ecological, biophysical and economic characteristics compared with primary forests. These trends are significant in all regions, but the extent of new forest cover has proven difficult to establish. These results, as well as the lack of more detailed knowledge, clearly demonstrate the need to improve sound scientific evidence to support policy. The two projects provide useful guidance for future monitoring efforts in the context of multilateral environmental agreements and of international aid, trade and development partnerships. Methodologically, the use of high-resolution remote sensing in representative samples has been shown to be cost-effective. Close collaboration between tropical institutions and inter-governmental organizations proved to be a fruitful arrangement in the different projects. To properly assist decision-making, monitoring and assessments should primarily be addressed at the national level, which also corresponds to the ratification level of the multilateral environmental agreements. The Forest Resources Assessment 2000 deforestation statistics from countries are consistent with the satellite-based estimates in Asia and America, but are significantly different in Africa, highlighting the particular need for long-term capacity-building activities in this continent.


2020 ◽  
Author(s):  
christelle vancutsem ◽  
Fréderic Achard ◽  
Jean-Francois Pekel ◽  
Ghislain Vieilledent ◽  
Silvia Carboni ◽  
...  

<p>Tropical moist forest (TMF) provide essential ecosystem services<sub>1,2</sub>. Fine-scale mapping and characterization of their disturbances are needed to support global conservation policies<sub>3</sub> and to accurately quantify their contribution to global carbon fluxes<sub>4</sub>. However, limited information exists on their remaining extent and long-term historical changes.</p><p>We produced a wall-to-wall map of TMF cover dynamics at 30-meter resolution from 1990 to 2019. Each individual image of the full Landsat archive (~1 200 000 scenes) has been mapped using an expert system to allow all disturbances in the forest cover - including from selective logging activities and fires that are visible during a short period - to be depicted and characterized in terms of timing (dates and duration), sequential dynamics, intensity, and extent.</p><p>The performance of our disturbance classifier has been validated against 12 235 reference sample plots resulting in 9.4% omissions, 8.1% false detections and 91.4% overall accuracy. </p><p>Our dataset depicts the TMF extent and patterns of disturbances through two complementary layers: a transition map and an annual change dataset. The transition map captures the resulting disturbance dynamics over the 30 years by depicting (i) remaining undisturbed forests, (ii) two types of degraded forests (corresponding mostly to either logged or burned forests), (iii) young forest regrowth, and (iv) deforested land that includes four subcategories of converted land cover: (a) water bodies (new dams and river flow changes); (b) tree plantations; and (c) other land cover that includes infrastructure, agriculture, and mining. The annual change dataset is a collection of 30 maps depicting - for each year between 1990 and 2019 - the spatial extents of undisturbed forests and disturbances.</p><p><br>We found that pan-tropical forest disturbances have been underestimated so far. For the first time at this scale, we discriminate deforestation from degradation and we underline the importance of the degradation process in tropical forest ecosystems. Our analysis shows the trends of deforestation and degradation by country, sub-region, and continent. Finally, we extrapolated the recent average rates of disturbances to predict the extent of the undisturbed TMF by 2050.<br><br></p><p>We will continue to update the TMF dataset with future Landsat data and intend to adapt the methodology to Sentinel 2 data (available since 2015) towards near real-time monitoring of TMF with a higher frequency of observations and finer spatial resolution.<br><br>1. Gibson et al. 2011 doi:10.1038/nature10425<br>2. Watson et al. 2018 Doi:10.1038/s41559-018-0490-x<br>3. Mackey et al. 2015 doi:10.1111/conl.12120<br>4. Mitchard E.T.A. 2018 doi </p>


Author(s):  
Jean Maley

SynopsisThis chapter sets out to give a historical overview of the African rain forest from its origins, towards the end of the Cretaceous period. The areas around the Gulf of Guinea, in particular from Ivory Coast to Nigeria and especially Cameroon, Gabon and Congo, appear to have been already occupied at this time by wet tropical forest formations mainly composed of Angiosperms which were then becoming established. In the course of the Tertiary period the combined effect of the equator being situated further north than now and the development of the Antarctic ice cap favoured the development of wet tropical conditions over a large part of North Africa which in turn led to the extension of tropical forest to various sites on the shores of the Tethys Sea. There were probably at this time common taxa and similar vegetation patterns stretching from the Gulf of Guinea to the Tethys Sea.Towards the end of the Tertiary, the equator reached its present position and the northern hemisphere ice caps appeared, and these phenomena resulted in the disappearance of the forest formations spread across the north of Africa, and the concentration of these formations near the equatorial zone around the Gulf of Guinea and in the Congo–Zaïre basin. From 800 000 years ago onwards the marked glacial variations at middle and high latitudes in both hemispheres, with a periodicity of about 100 000 years determined by the orbital variations of the earth around the sun, lowered temperatures in equatorial areas and brought arid climates at times of maximum glacial extension. The most arid periods resulted in the fragmentation of the forest cover, and the forest biotopes and their biodiversity were preserved in a series of refugia. The lowering of temperatures also resulted in the extension of montane flora to low altitudes, with migration of montane flora and fauna between main mountain ranges. These compounded phenomena of isolation and migration, probably involving genie exchange, must have resulted in numerous speciation phenomena. Subsequently, such montane flora or fauna became isolated on mountain areas during periods of maximum warming, in the last instance in the course of the Holocene, when a vast forest cover became re-established from Guinea westwards, and to the East as far as the Lake Victoria area. The phases of maximum fragmentation, which appear to have been connected with only the coldest periods – in the last instance during the second part of isotopic stages 6 (fromc.160 to 130 000 years) and 2 (fromc.24 to 12000 years BP) – relate to less than 10% of the last 800 000 years, and the phases of maximum forest extension would likewise appear to be less than 10% of the period. The remaining 80–90% of the time relates to ‘intermediate situations’ which varied from period to period, and these intermediate extension situations seem to have been the norm over the larger part of the Quaternary, rather than the present situation which is closer to a situation of maximum extension.


2022 ◽  
Vol 302 ◽  
pp. 114067
Author(s):  
Manoranjan Mishra ◽  
Celso Augusto Guimarães Santos ◽  
Thiago Victor Medeiros do Nascimento ◽  
Manoj Kumar Dash ◽  
Richarde Marques da Silva ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document