river flow
Recently Published Documents


TOTAL DOCUMENTS

2815
(FIVE YEARS 922)

H-INDEX

84
(FIVE YEARS 10)

2022 ◽  
Author(s):  
Qianqian Liu ◽  
Huijie Xue ◽  
Fei Chai ◽  
Zhengui Wang ◽  
Yi Chao ◽  
...  

Previous studies suggest importance of wind forcing on salt intrusion length and salt flux in river-dominated microtidal estuaries (with tidal range < 2 m). In this study, we investigate the role of wind forcing on salt intrusion in a mesotidal estuary, San Francisco Bay (SFB), with tidal ranges between 2 m and 4 m, through an open-source model of high transferability, the Semi-implicit Cross-scale Hydroscience Integrated System Model (SCHISM). Meanwhile, we investigate circulation and salinity variation of San Francisco Bay. The model’s performance in hydrodynamics at tidal, spring/neap and seasonal time scales is validated through model-observation comparisons. Through realistically forced and process-oriented experiments, we demonstrate that spring/neap tides can cause fortnightly variations in salinity and currents by modulating vertical mixing and stratification; and seasonal variability of circulation in North Bay is determined by change of river discharge and modified by winds, while in South Bay it is dominated by wind-driven flows. Furthermore, we revealed the role of wind on X2 (the distance from the Golden Gate Bridge to the 2-PSU isohaline at the bottom). The model results show that X2 is primarily influenced by river flow and proportional to river flow to the ¼ power. Meanwhile, wind plays a secondary role in modifying X2 by increasing X2 from 0 to 5 km during low discharge period, while spring/neap tide modulation on X2 is negligible but important for salt balance in sub-regions downstream of X2.


2022 ◽  
Vol 11 (1) ◽  
pp. 61
Author(s):  
Emmanouil Psomiadis

The present study provides information about the evolution of the Sperchios River deltaic area over the last 6500 years. Coastal changes, due to natural phenomena and anthropogenic activities, were analyzed utilizing a variety of geospatial data such as historic records, topographic maps, aerial photos, and satellite images, covering a period from 4500 BC to 2020. A qualitative approach for the period, from 4500 BC to 1852, and a quantitative analysis, from 1852 to the present day, were employed. Considering their scale and overall quality, the data were processed and georeferenced in detail based on the very high-resolution orthophoto datasets of the area. Then, the multitemporal shorelines were delineated in a geographical information system platform. Two different methods were utilized for the estimation of the shoreline changes and trends, namely the coastal change area method and the cross-section analysis, by implementing the digital shoreline analysis system with two statistical approaches, the end point rate and the linear regression rate. Significant river flow and coastline changes were observed with the overall increase in the delta area throughout the study period reaching 135 km2 (mean annual growth of 0.02 km2/yr) and the higher accretion rates to be detected during the periods 1805–1852, 1908–1945 and 1960–1986, especially at the central and north part of the gulf. During the last three decades, the coastline has remained relatively stable with a decreasing tendency, which, along with the expected sea-level rise due to climate change, can infer significant threats for the coastal zone in the near future.


Water ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 118
Author(s):  
Andrey Kalugin

The main goal of this study was to obtain the attribution results of a physical assessment of the modern hydrological consequences of separately natural and anthropogenic components of climate change, based on the synthesis of detailed process-based models of river runoff formation and an ensemble of Earth system models (ESMs) within the large river basins in Eastern Siberia. This approach allows calculating the river flow using ESM-based data over the observation period under two scenarios, considering: (1) the anthropogenic impact of increasing greenhouse gas emissions and (2) only internal fluctuations of the climate system and natural external forcing. According to the results of the numerical experiments, the attributions of anthropogenic components of climate change in the dynamics of the Lena runoff are weak, i.e., during the observation period, the Lena River flow statistically significantly increases, but it occurs mainly due to natural climate variability. The changes in the Selenga runoff are intensely influenced by the anthropogenic component of climate change. Since the 1970s, the Selenga runoff increased under natural climatic conditions, but since the mid-1980s, it decreased under anthropogenic greenhouse gas emissions, due to reduced summer precipitation. This was the main reason for the last low-water period of 1996–2017 in the Selenga basin.


Water ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 120
Author(s):  
Katharina Allion ◽  
Lisa Kiemle ◽  
Stephan Fuchs

Various sampling strategies come into operation to monitor water quality in rivers. Most frequently, grab samples are taken, but they are not suitable for recording the highly dynamic transport of solids and solid-bound pollutants. Composite samples reduce the influence of input and transport dynamics and are better suited to determine the annual river loads. Large-volume samplers (LVSs) produce both a composite sample over a long period of time and an amount of solids which allows for further analyses. In the small sub-catchment area of the Kraichbach river in Baden-Wuerttemberg (Germany) two LVSs have been installed to sample the river flow. The concentration of solids and phosphorus in the supernatant water and the settled sediment in the sampler have been determined and mean concentrations have been derived. Annual river loads were calculated in combination with discharge data from the nearby gauging station. Two sampling strategies of the LVS were tested and compared. For the first strategy, the LVS was used to collect quasi-continuous composite samples throughout the year, whereas, with the second strategy, samples were taken specifically for different flow conditions (low, mean and high flow). This study compares the advantages and constraints of both strategies. Results indicate that the first strategy is better suited to determine annual river loads. Quasi-continuous large-volume composite sampling is recommended for further monitoring campaigns.


Water ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 80
Author(s):  
Huseyin Cagan Kilinc ◽  
Bulent Haznedar

River flow modeling plays a crucial role in water resource management and ensuring its sustainability. Therefore, in recent years, in addition to the prediction of hydrological processes through modeling, applicable and highly reliable methods have also been used to analyze the sustainability of water resources. Artificial neural networks and deep learning-based hybrid models have been used by scientists in river flow predictions. Therefore, in this study, we propose a hybrid approach, integrating long-short-term memory (LSTM) networks and a genetic algorithm (GA) for streamflow forecasting. The performance of the hybrid model and the benchmark model was taken into account using daily flow data. For this purpose, the daily river flow time series of the Beyderesi-Kılayak flow measurement station (FMS) from September 2000 to June 2019 and the data from Yazıköy from December 2000 to June 2018 were used for flow measurements on the Euphrates River in Turkey. To validate the performance of the model, the first 80% of the data were used for training, and the remaining 20% were used for the testing of the two FMSs. Statistical methods such as linear regression was used during the comparison process to assess the proposed method’s performance and to demonstrate its superior predictive ability. The estimation results of the models were evaluated with RMSE, MAE, MAPE, STD and R2 statistical metrics. The comparison of daily streamflow predictions results revealed that the LSTM-GA model provided promising accuracy results and mainly presented higher performance than the benchmark model and the linear regression model.


2022 ◽  
Vol 82 ◽  
Author(s):  
R. Z. Gomes ◽  
A. L. Paschoalini ◽  
A. A. Weber ◽  
K. B. Santiago ◽  
E. Rizzo ◽  
...  

Abstract The release of water from the reservoir hypolimnion, lower concentration of oxygen and the anthropogenic regulation of the river flow, could affect the reproduction of fish, especially migratory species. However, little is known about the effects of these changes in water on non-migratory species. In this sense, the reproduction of Acestrohynchus lacustris was evaluated in two sections of São Francisco River, Minas Gerais, Brazil. Section 1, located immediately downstream from Três Marias Dam (18°09’31.65”S and 45°13’36.00”W) and section 2, located at the confluence of the São Francisco and the Abaeté Rivers (18°02’47.78”S and 45°10’57.95”W). For this, we obtained the physico-chemical parameters of water of each study section. Additionally, biometric data and biological indices of all specimens were measured. Fecundity and follicles diameters were measured in females. Temperature, dissolved oxygen and flow showed lower values in section 1. Fish captured in this section, had lower values of GSI in both sexes, and females presented decreased values of fecundity and follicles diameter. This species showed reproductive activity in the two sections analyzed, however, in section 1 where the temperature and dissolved oxygen presented significant lower values, the reproductive capacity of A. lacustris, was negatively affected.


2022 ◽  
Vol 955 (1) ◽  
pp. 012004
Author(s):  
A Parwanti ◽  
S I Wahyudi ◽  
M F Ni’am

Abstract Sand bags are one of the technologies still widely used to elevate water level. The sand bags are arranged in order to dam the river flow and to irrigate agricultural land, especially during the dry season. In line with its utilization, water supply of this technology is still less effective, thus, alternative technology is needed. This study aimed to test Barrier Knock-Down as an alternative technology that can be assembled and stored. This study was a quantitative research conducted by testing the prototypes. The tests were carried out using a monitor instrument Diver, piezometer. The tests of comparison were conducted in 4 types: Type 1, it was an L shape filled with sand+water; Type 2 was I shape filled with sand+water; Type 3 was an I shape filled with water; Type 4 was in an L shape filled with water. From the results of the study, type 1 is the best method for weir irrigation technology because of its ability to resist vertical and horizontal force than other types. Type 1-an L shape filled with sand+water with the value of safety factor rolling stability 5,28 and shear stability 2,23. Experiment result a stable elevation value in weir, did not experience a shift.


2021 ◽  
Vol 21 (6) ◽  
pp. 347-355
Author(s):  
Seongkyu Kang ◽  
Sijung Choi ◽  
Dongryul Lee

In this study, the appropriateness of the current publicly announced and managed instream flow in the Seomjingang River watershed was evaluated based on the water quantity, water quality, and state of the aquatic ecosystem. The stream flow was evaluated based on the observed water flow rate at the Gurye-gun (Songjeong-ri) station that is the main point of the Seomjingang River flow management and located at the lowest downstream of the main stream of the Seomjingang River. Another important reason for choosing this station was that observational data from before the construction of the major dam to the present day were available. The water quality and aquatic ecosystem conditions were reviewed based on the data measured over the past 20 years, and the achievement ratio of instream flow was compared with that of stations in the other major river systems. Based on the evaluation result, the instream flow was re-estimated for the 11 important stations of the Seomjingang River and its two branches. Based on the currently permitted water use of the Seomjingang River, the amount of water required to supply for the instream flow deficit during dry seasons was predicted and presented as a reference for water management work.


Sign in / Sign up

Export Citation Format

Share Document