Use of the small punch test to determine the ductile-to-brittle transition temperature of structural steels

Author(s):  
M. A. CONTRERAS ◽  
C. RODRÍGUEZ ◽  
F. J. BELZUNCE ◽  
C. BETEGÓN
Author(s):  
Kaishu Guan ◽  
Limeng Xu ◽  
Cheng Wen ◽  
Jiru Zhong

In the recent years, small punch testing (SPT) techniques has made great progress in China. The SPT was studied to estimate the tensile properties, the fracture toughness and ductile-to brittle transition temperature, and the creep behavior. In 2012, a standard of small punch testing was issued in China and the application of SPT in power generation and petrochemical industry has become a prime candidate. The present paper concentrates on progress of technique and standardization and industrial acceptance in assessing the structure integrity in China. China has carried out close cooperation with Material & Metallurgical research Ltd in Czech to compare Standards between China and EU code. The size of specimen and jig was researched and compared each other. The influence of jig and test machine was researched and improved the specific requirement of jig and test machine. The evolution of stress state of deformation process of specimen in SPT was clarified. The results showed that at initial stage the elastic bending stress is predominant and then the stress state dominated by membrane stress with the decreasing of elastic bending stress and the increasing of punch displacement. The reason for introducing the specimen thickness h2 to the equation for correlating yield load of SPT with yield strength, and the reason for introducing specimen thickness h to equation for correlating the maximum load of SPT with tensile strength were provided respectively. The correlation equation of ductile to brittle transition temperature and SPT energy transition temperature TSP was established and it was successfully used to evaluate embrittlement of hydrogenation reactor. Small punch creep testing by reverse finite element simulation was carried out and used to evaluate the creep life in power generation industry. Fracture toughness and Master curve using SPT by reverse finite element simulation combined with local approach was studied.


Author(s):  
H Chen ◽  
J Yang ◽  
XL Xiao

High velocity oxy-fuel thermal spraying was used to prepare free-standing CoNiCrAlY (Co–31.7%Ni–20.8%Cr–8.1%Al–0.5%Y, all in wt%) coatings of an approximate thickness of 0.5 mm. Small punch tests under multi-step loading conditions were performed between room temperature and 600 ℃ on these samples to evaluate the ductile-to-brittle transition temperature. The microstructure of the coatings was characterised using a scanning electron microscope with energy-dispersive X-ray analysis. A two-phase structure consisting of fcc γ-Ni and bcc β-NiAl was found to exist. The displacements obtained from small punch multi-step loading tests at each load increment were relatively small and similar at temperatures below 500 ℃ but a significant increase in displacement was noted at 600 ℃. Fractographic investigation showed that the main fracture mode was dominated by extensive γ matrix tearing at elevated temperatures. A distinct stress and strain behaviour was found at 600 ℃, indicating that the ductile-to-brittle transition temperature of this CoNiCrAlY coating occurred between 500 ℃ and 600 ℃.


Sign in / Sign up

Export Citation Format

Share Document