On the origin and evolution of major morphological characters

2007 ◽  
Vol 81 (4) ◽  
pp. 609-628 ◽  
Author(s):  
Graham E. Budd
1989 ◽  
Vol 63 (5) ◽  
pp. 677-690 ◽  
Author(s):  
Fernando E. Novas

The tarsus and distal end of the tibia are described in Herrerasauridae, a family that includes the oldest known dinosaurs. This tarsal configuration is compared to those of more advanced dinosaurs and to other archosaurs. Through phylogenetic analysis of the morphological characters, a picture emerges of the evolutionary changes in the ankles of early dinosaurs.The tibia of the herrerasaurids has a quadrangular distal articular surface, with a shallow ventrolateral notch. This morphology is strikingly similar to that of the lagosuchid thecodontsPseudolagosuchusandLagosuchusand represents the most primitive tibial condition known for Dinosauria.Aside from the derived states possessed by Theropoda, Sauropodomorpha, and Ornithischia, respectively, it was impossible to recognize synapomorphies in tibiotarsal anatomy shared by these groups exclusive of Herrerasauridae. The transverse broadening of the distal end of the tibia seems to have been attained independently by ornithischians, theropods, and sauropodomorphs.The tarsus of herrerasaurids is characterized by an astragalus with a small but conspicuous lateroventral depression, by a pyramidal calcaneum with a ventromedial projection that articulates into the cavity of the astragalus just mentioned, and by a posterolaterally directed calcaneal tuber. These characters are also seen inLagosuchus(a close relative of dinosaurs), in the prosauropodRiojasaurusand, insofar as the astragalus is concerned, in the primitive dinosaurWalkeria, which suggests that dinosaurs of different lineages shared the same tarsal condition.By definition, this type of articulation between the astragalus and calcaneum follows the “crocodile-reversed” tarsal condition, suggesting that the tarsus in lagosuchids and dinosaurs could be derived from the “crocodile-reversed” pattern present in Ornithosuchidae andEuparkeria. In contrast, the mesotarsal ankle of lagosuchids and dinosaurs lacks the synapomorphies of the “crocodile-normal” ankle present in Crocodylia, Rauisuchidae, Aetosauria, and other archosaurs.It is concluded that Herrerasauridae retained the primitive tibiotarsal condition for Dinosauria, from which those of the Ornithischia, Sauropodomorpha, and Theropoda were derived. Furthermore, tibiotarsal anatomy supports monophyly of Dinosauria.


2018 ◽  
Vol 285 (1875) ◽  
pp. 20180312 ◽  
Author(s):  
Andrew Knapp ◽  
Robert J. Knell ◽  
Andrew A. Farke ◽  
Mark A. Loewen ◽  
David W. E. Hone

Establishing the origin and function of unusual traits in fossil taxa provides a crucial tool in understanding macroevolutionary patterns over long periods of time. Ceratopsian dinosaurs are known for their exaggerated and often elaborate horns and frills, which vary considerably between species. Many explanations have been proposed for the origin and evolution of these ‘ornamental’ traits, from predator defence to socio-sexual dominance signalling and, more recently, species recognition. A key prediction of the species recognition hypothesis is that two or more species possessing divergent ornamental traits should have been at least partially sympatric. For the first time to our knowledge, we test this hypothesis in ceratopsians by conducting a comparison of the morphological characters of 46 species. A total of 350 ceratopsian cladistic characters were categorized as either ‘internal’, ‘display’ (i.e. ornamental) or ‘non display’. Patterns of diversity of these characters were evaluated across 1035 unique species pairs. Display characters were found to diverge rapidly overall, but sympatric species were not found to differ significantly in their ornamental disparity from non-sympatric species, regardless of phylogenetic distance. The prediction of the species recognition hypothesis, and thus the idea that ornamentation evolved as a species recognition mechanism, has no statistical support among known ceratopsians.


2019 ◽  
Vol 187 (2) ◽  
pp. 453-478
Author(s):  
M E Ailin O´donohoe ◽  
María Celeste Luna ◽  
Eleonora Regueira ◽  
Andres E Brunetti ◽  
Nestor G Basso ◽  
...  

Abstract Skin glands in amphibians are either distributed throughout the skin or aggregated in multiglandular structures such as the parotoids typical of most species of Bufonidae. Although many early divergent and derived bufonids lack a discrete parotoid in the postorbital–supratympanic (PoSt) region, they have a great macroscopic diversity in the skin morphology of this region. To understand the origin and evolution of this diversity, in particular of the parotoids, we describe the histomorphology of the skin of the PoSt and dorsal regions in 17 species of bufonids, with or without external evident parotoid, and compare it with previously published descriptions. The survey results in 27 characters that were optimized on a phylogenetic hypothesis of Bufonidae. Our results reveal that the PoSt region has a noteworthy morphological diversity of types of glands, spatial organization and differences in the secretion products. Some morphological characters represent putative synapomorphies of internal clades of Bufonidae and are related to the progressive differentiation towards defined structures (macroglands, parotoids). These morphological results, along with published information on the toxicity of the skin secretions and defensive behaviours in some representative species, allow us to infer possible relationships between these features.


1980 ◽  
Vol 35 (8) ◽  
pp. 774-774 ◽  
Author(s):  
Hendrika Vande Kemp
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document