origin and evolution
Recently Published Documents


TOTAL DOCUMENTS

3361
(FIVE YEARS 754)

H-INDEX

120
(FIVE YEARS 13)

2022 ◽  
Author(s):  
Ksenia G Kuznetsova ◽  
Sofia S Zvonareva ◽  
Rustam Ziganshin ◽  
Elena S Mekhova ◽  
Polina Yu Dgebuadze ◽  
...  

Venoms of predatory marine cone snails (the family Conidae, order Neogastropoda) are intensely studied because of the broad range of biomedical applications of the neuropeptides that they contain, conotoxins. Meanwhile anatomy in some other neogastropod lineages strongly suggests that they have evolved similar venoms independently of cone snails, nevertheless their venom composition remains unstudied. Here we focus on the most diversified of these lineages, the genus Vexillum (the family Costellariidae). We have generated comprehensive multi-specimen, multi-tissue RNA-Seq data sets for three Vexillum species, and supported our findings in two species by proteomic profiling. We show that venoms of Vexillum are dominated by highly diversified short cysteine-rich peptides that in many aspects are very similar to conotoxins. Vexitoxins possess the same precursor organization, display overlapping cysteine frameworks and share several common post-translational modifications with conotoxins. Some vexitoxins show detectable sequence similarity to conotoxins, and are predicted to adopt similar domain conformations, including a pharmacologically relevant inhibitory cysteine-know motif (ICK). The tubular gL of Vexillum is a notably more recent evolutionary novelty than the conoidean venom gland. Thus, we hypothesize lower divergence between the toxin genes, and their somatic counterparts compared to that in conotoxins, and we find support for this hypothesis in the molecular evolution of the vexitoxin cluster V027. We use this example to discuss how future studies on vexitoxins can inform origin and evolution of conotoxins, and how they may help addressing standing questions in venom evolution.


Author(s):  
David Garofalo

Giant radio galaxies are arguably the least understood of jetted active galactic nuclei (AGN). We propose that radio galaxies are the product of large mergers that do not involve radio galaxies or radio quasars, such as in merging spiral galaxies, while giant radio galaxies emerge from a merger involving a parent that in the not-too-distant past harbored a radio galaxy. Predictions following from this are an upper limit to the number fraction of giant radio galaxies to radio galaxies, lower average redshift for giant radio galaxies, a higher incidence of high excitation for giant radio galaxies compared with radio galaxies, and lower average prograde black hole spin values for giant radio galaxies compared to radio galaxies and to bright radio quiet quasars.


Author(s):  
Zhenhua Zhang ◽  
Xiaoya Ma ◽  
Yannan Liu ◽  
Lingxiao Yang ◽  
Xuan Shi ◽  
...  

2022 ◽  
pp. 1003-1036
Author(s):  
T. M. DONAHUE ◽  
J. B. POLLACK

2022 ◽  
pp. 49-67
Author(s):  
Siyi Fu ◽  
Chenggong Zhang ◽  
Anqing Chen ◽  
A.J. (Tom) Van Loon ◽  
Junxing Zhao ◽  
...  

2021 ◽  
Vol 14 (1) ◽  
pp. 319
Author(s):  
Saniya Khan ◽  
Khaliqur Rahman ◽  
Mohd Tariq ◽  
Salman Hameed ◽  
Basem Alamri ◽  
...  

Solid-state transformers (SSTs) have emerged as a superior alternative to conventional transformers and are regarded as the building block of the future smart grid. They incorporate power electronics circuitry and high-frequency operation, which allows high controllability and enables bi-directional power flow, overcoming the limitations of conventional transformers. This paper presents a detailed analysis of the solid-state transformer, expounding the fundamentals, converter topologies, applications, and future challenges of the SST in a systematic manner. The paper discusses the necessity of improved replacement of the low-frequency transformers (LFTs) and presents the configuration of SST. It presents SST fundamentals in individual stages and explores its origin and evolution. The basic topologies, their specifications, and control strategies are also described. The applications of SST as a replacement of LFTs are discussed along with recent applications. The future challenges for real-time implementation of SSTs are explored, and research directions are proposed.


2021 ◽  
pp. SP524-2021-88
Author(s):  
D. A. Paton ◽  
E. M. Mortimer ◽  
P. Markwick ◽  
J. Khan ◽  
A. Davids ◽  
...  

AbstractThe Diaz Marginal Ridge (DMR), on the southern transform margin of South Africa, is a bathymetric feature parallel to the Agulhas Falkland Fracture Zone (AFFZ) that has long been considered an archetype marginal ridge; and yet its origin and evolution remains unconstrained. Using recently acquired seismic data we present a new structural interpretation of the DMR and its association with the evolution of both the AFFZ and the Southern Outeniqua Basin. In contrast to previous scenarios invoking thermo-mechanical explanations for its evolution, we observe a more straightforward structural model in which the genesis of the DMR results from the structural inversion of a Jurassic rift basin. This inversion resulted in the progressive onlap of latest Valanginian-Hauterivian aged stratigraphic units, important for the formation of stratigraphic plays of the recent Brulpadda discovery.Paradoxically, this contraction is contemporaneous with renewed extension observed in the inboard normal faults. The orientation of the DMR and inboard structures have been demonstrated to be controlled by the underlying Cape Fold Belt (CFB) fabric. The onset of motion across the AFFZ shear system led to east-west orientated maximum stress and north-south orientated minimum stress. We propose this stress re-orientation resulted in strain partitioning across existing structures whereby in addition to strike-slip on the AFFZ there was coeval extension and contraction, the nature of which was determined by fault orientation. The fault orientation in turn was controlled by a change in orientation of the underlying CFB. Our model provides new insights into the interplay of changes in regional stress orientation with basement fabric and localised magmatism along an evolving transform. The application of horizontal strain partitioning can provide an explanation of similar features observed on other transform margins.


2021 ◽  
Vol 23 ◽  
Author(s):  
Lei Wu ◽  
Xiaolu Jiao ◽  
Dezhi Zhang ◽  
Yalin Cheng ◽  
Gang Song ◽  
...  

Abstract: Genomic data are important for understanding the origin and evolution of traits. Under the context of rapidly developing sequencing technologies and more widely available genome sequences, researchers are able to study evolutionary mechanisms of traits via comparative genomic methods. Compared with other vertebrates, bird genomes are relatively small and exhibit conserved synteny with few repetitive elements, which makes them suitable for evolutionary studies. Increasing genomic progress has been reported on the evolution of powered flight, body size variation, beak morphology, plumage coloration, high-elevation colonization, migration, and vocalization. By summarizing previous studies, we demonstrate the genetic bases of trait evolution, highlighting the roles of small-scale sequence variation, genomic structural variation, and changes in gene interaction networks. We suggest that future studies should focus on improving the quality of reference genomes, exploring the evolution of regulatory elements and networks, and combining genomic data with morphological, ecological, behavioral, and developmental biology data.


Sign in / Sign up

Export Citation Format

Share Document