ceratopsian dinosaurs
Recently Published Documents


TOTAL DOCUMENTS

19
(FIVE YEARS 4)

H-INDEX

12
(FIVE YEARS 1)

2021 ◽  
Vol 9 ◽  
Author(s):  
Christian A. Sidor ◽  
Neil J. Tabor ◽  
Roger M. H. Smith

A new burnetiamorph therapsid, Isengops luangwensis, gen. et sp. nov., is described on the basis of a partial skull from the upper Madumabisa Mudstone Formation of the Luangwa Basin of northeastern Zambia. Isengops is diagnosed by reduced palatal dentition, a ridge-like palatine-pterygoid boss, a palatal exposure of the jugal that extends far anteriorly, a tall trigonal pyramid-shaped supraorbital boss, and a recess along the dorsal margin of the lateral temporal fenestra. The upper Madumabisa Mudstone Formation was deposited in a rift basin with lithofacies characterized by unchannelized flow, periods of subaerial desiccation and non-deposition, and pedogenesis, and can be biostratigraphically tied to the upper Cistecephalus Assemblage Zone of South Africa, suggesting a Wuchiapingian age. Isengops is the second burnetiamorph recognized from Zambia and is part of a tetrapod assemblage remarkably similar to others across southern Pangea during the Wuchiapingian. A revised cladistic analysis of Biarmosuchia yielded over 500 most parsimonious trees that generally reaffirm the results of previous analyses for burnetiamorphs: Lemurosaurus is basal, Lobalopex and Isengops are proximate burnetiid outgroups, and Bullacephalus, Burnetia, Mobaceras, Niuksenitia, and Pachydectes are burnetiines. Furthermore, Russian biarmosuchians are scattered throughout the tree and do not form sister taxon relationships with each other. Burnetiamorphs display a wide disparity of cranial adornments and are relatively speciose (13 species), especially when compared to the number of specimens discovered to date (∼16 specimens). As has been suggested in some other tetrapod clades (e.g., ceratopsian dinosaurs), the burnetiamorph fossil record supports an inferred macroevolutionary relationship between cranial adornment and increased speciation rate.


2021 ◽  
Vol 288 (1944) ◽  
pp. 20202938
Author(s):  
A. Knapp ◽  
R. J. Knell ◽  
D. W. E. Hone

Socio-sexual selection is predicted to be an important driver of evolution, influencing speciation, extinction and adaptation. The fossil record provides a means of testing these predictions, but detecting its signature from morphological data alone is difficult. There are, nonetheless, some specific patterns of growth and variation which are expected of traits under socio-sexual selection. The distinctive parietal-squamosal frill of ceratopsian dinosaurs has previously been suggested as a socio-sexual display trait, but evidence for this has been limited. Here, we perform a whole-skull shape analysis of an unprecedentedly large sample of specimens of Protoceratops andrewsi using a high-density landmark-based geometric morphometric approach to test four predictions regarding a potential socio-sexual signalling role for the frill. Three predictions—low integration with the rest of the skull, significantly higher rate of change in size and shape during ontogeny, and higher morphological variance than other skull regions—are supported. One prediction, sexual dimorphism in shape, is not supported, suggesting that sexual differences in P. andrewsi are likely to be small. Together, these findings are consistent with mutual mate choice or selection for signalling quality in more general social interactions, and support the hypothesis that the frill functioned as a socio-sexual signal in ceratopsian dinosaurs.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e9888 ◽  
Author(s):  
Rina Sakagami ◽  
Soichiro Kawabe

Triceratops is one of the well-known Cretaceous ceratopsian dinosaurs. The ecology of Triceratops has been controversial because of its unique morphological features. However, arguments based on brain and inner ear structures have been scarce. In this study, two braincases (FPDM-V-9677 and FPDM-V-9775) were analyzed with computed tomography to generate three-dimensional virtual renderings of the endocasts of the cranial cavities and bony labyrinths. Quantitative analysis, including comparison of linear measurements of the degree of development of the olfactory bulb and inner ear, was performed on these virtual endocasts to acquire detailed neuroanatomical information. When compared with other dinosaurs, the olfactory bulb of Triceratops is relatively small, indicating that Triceratops had a reduced acuity in sense of smell. The lateral semicircular canal reveals that the basicranial axis of Triceratops is approximately 45° to the ground, which is an effective angle to display their horns as well as frill, and to graze. The semicircular canals of Triceratops are relatively smaller than those of primitive ceratopsians, such as Psittacosaurus and Protoceratops, suggesting that sensory input for the reflexive stabilization of gaze and posture of Triceratops was less developed than that of primitive ceratopsians. The cochlear length of Triceratops is relatively short when compared with other dinosaurs. Because cochlear length correlates with hearing frequency, Triceratops was likely adapted to hearing low frequencies.


PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e7324 ◽  
Author(s):  
Justyna Słowiak ◽  
Victor S. Tereshchenko ◽  
Łucja Fostowicz-Frelik

Protoceratops andrewsi is a well-known ceratopsian dinosaur from the Djadokhta Formation (Upper Cretaceous, Mongolia). Since the 1920s, numerous skeletons of different ontogenetic stages from hatchlings to adults, including fully articulated specimens, have been discovered, but the postcranial anatomy of Protoceratops has not been studied in detail. A new, mostly articulated subadult individual provides an excellent opportunity for us to comprehensively describe the anatomy of the limb skeleton, to compare to other ceratopsian dinosaurs, and to study the ontogenetic and intraspecific variation in this species. New data provided by the specimen shed light on the lifestyle of P. andrewsi. The young subadult individuals present an array of morphological characters intermediate between the bipedal Psittacosaurus and fully quadrupedal adult P. andrewsi. We compare these observations with a broad range of non-ceratopsid Neoceratopsia (of various locomotor adaptations) and Psittacosauridae (obligate bipeds), which gives us insight into the evolution of the skeletal characters informative for the postural change in ceratopsian dinosaurs.


2018 ◽  
Vol 285 (1875) ◽  
pp. 20180312 ◽  
Author(s):  
Andrew Knapp ◽  
Robert J. Knell ◽  
Andrew A. Farke ◽  
Mark A. Loewen ◽  
David W. E. Hone

Establishing the origin and function of unusual traits in fossil taxa provides a crucial tool in understanding macroevolutionary patterns over long periods of time. Ceratopsian dinosaurs are known for their exaggerated and often elaborate horns and frills, which vary considerably between species. Many explanations have been proposed for the origin and evolution of these ‘ornamental’ traits, from predator defence to socio-sexual dominance signalling and, more recently, species recognition. A key prediction of the species recognition hypothesis is that two or more species possessing divergent ornamental traits should have been at least partially sympatric. For the first time to our knowledge, we test this hypothesis in ceratopsians by conducting a comparison of the morphological characters of 46 species. A total of 350 ceratopsian cladistic characters were categorized as either ‘internal’, ‘display’ (i.e. ornamental) or ‘non display’. Patterns of diversity of these characters were evaluated across 1035 unique species pairs. Display characters were found to diverge rapidly overall, but sympatric species were not found to differ significantly in their ornamental disparity from non-sympatric species, regardless of phylogenetic distance. The prediction of the species recognition hypothesis, and thus the idea that ornamentation evolved as a species recognition mechanism, has no statistical support among known ceratopsians.


2015 ◽  
Vol 1 (5) ◽  
pp. e1500055 ◽  
Author(s):  
Gregory M. Erickson ◽  
Mark A. Sidebottom ◽  
David I. Kay ◽  
Kevin T. Turner ◽  
Nathan Ip ◽  
...  

Herbivorous reptiles rarely evolve occluding dentitions that allow for the mastication (chewing) of plant matter. Conversely, most herbivorous mammals have occluding teeth with complex tissue architectures that self-wear to complex morphologies for orally processing plants. Dinosaurs stand out among reptiles in that several lineages acquired the capacity to masticate. In particular, the horned ceratopsian dinosaurs, among the most successful Late Cretaceous dinosaurian lineages, evolved slicing dentitions for the exploitation of tough, bulky plant matter. We show howTriceratops, a 9-m-long ceratopsian, and its relatives evolved teeth that wore during feeding to create fullers (recessed central regions on cutting blades) on the chewing surfaces. This unique morphology served to reduce friction during feeding. It was achieved through the evolution of a complex suite of osseous dental tissues rivaling the complexity of mammalian dentitions. Tribological (wear) properties of the tissues are preserved in ~66-million-year-old teeth, allowing the creation of a sophisticated three-dimensional biomechanical wear model that reveals how the complexes synergistically wore to create these implements. These findings, along with similar discoveries in hadrosaurids (duck-billed dinosaurs), suggest that tissue-mediated changes in dental morphology may have played a major role in the remarkable ecological diversification of these clades and perhaps other dinosaurian clades capable of mastication.


Paleobiology ◽  
2008 ◽  
Vol 34 (4) ◽  
pp. 534-552 ◽  
Author(s):  
Henry C. Fricke ◽  
Dean A. Pearson

Questions related to dinosaur behavior can be difficult to answer conclusively by using morphological studies alone. As a complement to these approaches, carbon and oxygen isotope ratios of tooth enamel can provide insight into habitat and dietary preferences of herbivorous dinosaurs. This approach is based on the isotopic variability in plant material and in surface waters of the past, which is in turn reflected by carbon and oxygen isotope ratios of animals that ingested the organic matter or drank the water. Thus, it has the potential to identify and characterize dietary and habitat preferences for coexisting taxa.In this study, stable isotope ratios from coexisting hadrosaurian and ceratopsian dinosaurs of the Hell Creek Formation of North Dakota are compared for four different stratigraphic levels. Isotopic offsets between tooth enamel and tooth dentine, as well as taxonomic differences in means and in patterns of isotopic data among taxa, indicate that primary paleoecological information is preserved. The existence of taxonomic offsets also provides the first direct evidence for dietary niche partitioning among these herbivorous dinosaur taxa. Of particular interest is the observation that the nature of this partitioning changes over time: for some localities ceratopsian dinosaurs have higher carbon and oxygen isotope ratios than hadrosaurs, indicating a preference for plants living in open settings near the coast, whereas for other localities isotope ratios are lower, indicating a preference for plants in the understory of forests. In most cases the isotope ratios among hadrosaurs are similar and are interpreted to represent a dietary preference for plants of the forest canopy. The inferred differences in ceratopsian behavior are suggested to represent a change in vegetation cover and hence habitat availability in response to sea level change or to the position of river distributaries. Given our current lack of taxonomic resolution, it is not possible to determine if dietary and habitat preferences inferred from stable isotope data are associated with single, or multiple, species of hadrosaurian/ceratopsian dinosaurs.


Sign in / Sign up

Export Citation Format

Share Document