scholarly journals Muscle moment arms of pelvic limb muscles of the ostrich (Struthio camelus)

2007 ◽  
Vol 211 (3) ◽  
pp. 313-324 ◽  
Author(s):  
N. C. Smith ◽  
R. C. Payne ◽  
K. J. Jespers ◽  
A. M. Wilson
2010 ◽  
Vol 217 (1) ◽  
pp. 26-37 ◽  
Author(s):  
T. C. Crook ◽  
S. E. Cruickshank ◽  
C. M. McGowan ◽  
N. Stubbs ◽  
A. M. Wilson ◽  
...  

2014 ◽  
Author(s):  
John R Hutchinson ◽  
Jeffery W Rankin ◽  
Jonas Rubenson ◽  
Kate H Rosenbluth ◽  
Robert A Siston ◽  
...  

We developed a three-dimensional, biomechanical computer model of the 36 major pelvic limb muscle groups in an ostrich (Struthio camelus) to investigate muscle function in this, the largest of extant birds and model organism for many studies of locomotor mechanics, body size, anatomy and evolution. Combined with experimental data, we use this model to test two main hypotheses. We first query whether ostriches use limb orientations (joint angles) that optimize the moment-generating capacities of their muscles during walking or running. Next, we test whether ostriches use limb orientations at mid-stance that keep their extensor muscles near maximal, and flexor muscles near minimal, moment arms. Our two hypotheses relate to the control priorities that a large bipedal animal might evolve under biomechanical constraints to achieve more effective static weight support. We find that ostriches do not use limb orientations to optimize the moment-generating capacities or moment arms of their muscles. We infer that dynamic properties of muscles or tendons might be better candidates for locomotor optimization. Regardless, general principles explaining why species choose particular joint orientations during locomotion are lacking, raising the question of whether such general principles exist or if clades evolve different patterns (e.g. weighting of muscle force-length or force-velocity properties in selecting postures). This leaves theoretical studies of muscle moment arms estimated for extinct animals at an impasse until studies of extant taxa answer these questions. Finally, we compare our model’s results against those of two prior studies of ostrich limb muscle moment arms, finding general agreement for many muscles. Some flexor and extensor muscles exhibit self-stabilization patterns (posture-dependent switches between flexor/extensor action) that ostriches may use to coordinate their locomotion. However, some conspicuous areas of disagreement in our results illustrate some cautionary principles. Importantly, tendon-travel empirical measurements of muscle moment arms must be carefully designed to preserve 3D muscle geometry lest their accuracy suffer relative to that of anatomically realistic models. The dearth of accurate experimental measurements of 3D moment arms of muscles in birds leaves uncertainty regarding the relative accuracy of different modelling or experimental datasets such as in ostriches. Our model, however, provides a comprehensive set of 3D estimates of muscle actions in ostriches for the first time, emphasizing that avian limb mechanics are highly three-dimensional and complex, and how no muscles act purely in the sagittal plane. A comparative synthesis of experiments and models such as ours could provide powerful synthesis into how anatomy, mechanics and control interact during locomotion and how these interactions evolve. Such a framework could remove obstacles impeding the analysis of muscle function in extinct taxa.


2019 ◽  
Vol 222 (17) ◽  
pp. jeb182741
Author(s):  
Sarah B. Channon ◽  
Iain S. Young ◽  
Beckie Cordner ◽  
Nicola Swann

2014 ◽  
Author(s):  
John R Hutchinson ◽  
Jeffery W Rankin ◽  
Jonas Rubenson ◽  
Kate H Rosenbluth ◽  
Robert A Siston ◽  
...  

We developed a three-dimensional, biomechanical computer model of the 36 major pelvic limb muscle groups in an ostrich (Struthio camelus) to investigate muscle function in this, the largest of extant birds and model organism for many studies of locomotor mechanics, body size, anatomy and evolution. Combined with experimental data, we use this model to test two main hypotheses. We first query whether ostriches use limb orientations (joint angles) that optimize the moment-generating capacities of their muscles during walking or running. Next, we test whether ostriches use limb orientations at mid-stance that keep their extensor muscles near maximal, and flexor muscles near minimal, moment arms. Our two hypotheses relate to the control priorities that a large bipedal animal might evolve under biomechanical constraints to achieve more effective static weight support. We find that ostriches do not use limb orientations to optimize the moment-generating capacities or moment arms of their muscles. We infer that dynamic properties of muscles or tendons might be better candidates for locomotor optimization. Regardless, general principles explaining why species choose particular joint orientations during locomotion are lacking, raising the question of whether such general principles exist or if clades evolve different patterns (e.g. weighting of muscle force-length or force-velocity properties in selecting postures). This leaves theoretical studies of muscle moment arms estimated for extinct animals at an impasse until studies of extant taxa answer these questions. Finally, we compare our model’s results against those of two prior studies of ostrich limb muscle moment arms, finding general agreement for many muscles. Some flexor and extensor muscles exhibit self-stabilization patterns (posture-dependent switches between flexor/extensor action) that ostriches may use to coordinate their locomotion. However, some conspicuous areas of disagreement in our results illustrate some cautionary principles. Importantly, tendon-travel empirical measurements of muscle moment arms must be carefully designed to preserve 3D muscle geometry lest their accuracy suffer relative to that of anatomically realistic models. The dearth of accurate experimental measurements of 3D moment arms of muscles in birds leaves uncertainty regarding the relative accuracy of different modelling or experimental datasets such as in ostriches. Our model, however, provides a comprehensive set of 3D estimates of muscle actions in ostriches for the first time, emphasizing that avian limb mechanics are highly three-dimensional and complex, and how no muscles act purely in the sagittal plane. A comparative synthesis of experiments and models such as ours could provide powerful synthesis into how anatomy, mechanics and control interact during locomotion and how these interactions evolve. Such a framework could remove obstacles impeding the analysis of muscle function in extinct taxa.


1982 ◽  
Vol 62 (2) ◽  
pp. 587-596 ◽  
Author(s):  
R. J. RICHMOND ◽  
R. T. BERG

The effects of liveweight, breed, sex, diet and feeding level on muscle distribution were studied by comparing nine anatomical muscle groups dissected from the half carcasses of pigs from two studies. The first study consisted of 109 pigs representing barrows and gilts of three breed groups, fed two diets differing in energy and protein. The second study consisted of 72 barrows and gilts from two breed groups fed a low-energy diet at one of three feed levels. Animals were slaughtered at 23, 68, 91 or 114 kg liveweight. The results were compared with data from one other study. In pigs, major differentiation in muscle development appears to take place prior to 23 kg liveweight. Muscle differentiation appeared to follow functional demands. Muscles associated with mobility immediately after birth such as the distal limb muscles, developed early while those associated with greater locomotion and propulsion, such as the proximal pelvic limb muscles, developed later in life. Sex had little influence on muscle distribution between 23 and 114 kg liveweight. Proportion of abdominal muscles had apparently increased markedly prior to 23 kg liveweight and continued to be influenced by the level of feeding throughout. Breed differences in muscle distribution were observed for spinal, abdominal and distal thoracic limb muscles. Key words: Swine, muscle growth, muscle distribution


2009 ◽  
Vol 70 (9) ◽  
pp. 1129-1134 ◽  
Author(s):  
Hafsa Zaneb ◽  
Verena Kaufmann ◽  
Christian Stanek ◽  
Christian Peham ◽  
Theresia F. Licka
Keyword(s):  

Author(s):  
T. El-Mahdy ◽  
S. M. El-Nahla ◽  
L. C. Abbott ◽  
S. A. M. Hassan
Keyword(s):  

2004 ◽  
Vol 33 (2) ◽  
pp. 100-114 ◽  
Author(s):  
D. Gangl ◽  
G. E. Weissengruber ◽  
M. Egerbacher ◽  
G. Forstenpointner
Keyword(s):  

2010 ◽  
Vol 39 (4) ◽  
pp. 339-354
Author(s):  
S. M. El-Nahla ◽  
T. El-Mahdy ◽  
L. C. Abbott ◽  
S. A. M. Hassan

Sign in / Sign up

Export Citation Format

Share Document