moment arms
Recently Published Documents


TOTAL DOCUMENTS

306
(FIVE YEARS 58)

H-INDEX

46
(FIVE YEARS 4)

2021 ◽  
Author(s):  
Banuvathy Rajakumar ◽  
Swarnab Dutta ◽  
Varadhan SKM

Abstract Successful object interaction during daily living involves maintaining the grasped object in a static equilibrium by properly arranging the fingertip contact forces. According to the mechanical advantage hypothesis, during supination or pronation torque production, fingers with longer moment arms would produce greater normal force than those with shorter moment arms. Previous studies have probed this hypothesis by investigating the force contributions of the individual fingers through systematic variations (or perturbations) of properties of the grasped handle. In the current study, we examined the applicability of this hypothesis in a paradigm wherein the thumb tangential force was constrained to a minimal constant magnitude. This was achieved by placing the thumb on a freely movable slider platform. The total mass of the handle was systematically varied by adding external loads directly below the center of mass of the handle. Our findings suggest that in the human hand, the central nervous system (CNS) adopts the principle of mechanical advantage depending on an abstract sense of challenge attached to the task situation.


Author(s):  
Sophie Regnault ◽  
Philip Fahn-Lai ◽  
Stephanie E. Pierce

In evolutionary biomechanics, musculoskeletal computer models of extant and extinct taxa are often used to estimate joint range of motion (ROM) and muscle moment arms (MMAs), two parameters which form the basis of functional inferences. However, relatively few experimental studies have been performed to validate model outputs. Previously, we built a model of the short-beaked echidna (Tachyglossus aculeatus) forelimb using a traditional modelling workflow, and in this study we evaluate its behaviour and outputs using experimental data. The echidna is an unusual animal representing an edge-case for model validation: it uses a unique form of sprawling locomotion, and possesses a suite of derived anatomical features, in addition to other features reminiscent of extinct early relatives of mammals. Here we use diffusible iodine-based contrast-enhanced computed tomography (diceCT) alongside digital and traditional dissection to evaluate muscle attachments, modelled muscle paths, and the effects of model alterations on the MMA outputs. We use X-ray Reconstruction of Moving Morphology (XROMM) to compare ex vivo joint ROM to model estimates based on osteological limits predicted via single-axis rotation, and to calculate experimental MMAs from implanted muscles using a novel geometric method. We also add additional levels of model detail, in the form of muscle architecture, to evaluate how muscle torque might alter the inferences made from MMAs alone, as is typical in evolutionary studies. Our study identifies several key findings that can be applied to future models. 1) A light-touch approach to model building can generate reasonably accurate muscle paths, and small alterations in attachment site seem to have minimal effects on model output. 2) Simultaneous movement through multiple degrees of freedom, including rotations and translation at joints, are necessary to ensure full joint ROM is captured; however, single-axis ROM can provide a reasonable approximation of mobility depending on the modelling objectives. 3) Our geometric method of calculating MMAs is consistent with model-predicted MMAs calculated via partial velocity, and is a potentially useful tool for others to create and validate musculoskeletal models. 4) Inclusion of muscle architecture data can change some functional inferences, but in many cases reinforced conclusions based on MMA alone.


2021 ◽  
Vol 9 (10_suppl5) ◽  
pp. 2325967121S0033
Author(s):  
Martine Dolan ◽  
Michael Patetta ◽  
Sonia Pradhan ◽  
Danil Rybalko ◽  
Aimee Bobko ◽  
...  

Objectives: The Rotator Cuff (RC) is formed from the subscapularis, supraspinatus, infraspinatus, and teres minor muscles and their tendinous extensions. The 4 RC tendons insert on the humeral head such that they contribute to the dynamic stability of the glenohumeral joint along with their rotational actions on the shoulder. The moment arm can be used to demonstrate the work effort potential that a specific muscle is contributing to a musculoskeletal joint rotation. The objective of this study was to break out RC muscles into multiple fibers, providing more clarity as to how individual fibers contribute to a muscle’s overall moment arm during abduction. The aims of this study are: 1.) to illustrate within each RC muscle how multiple muscle fiber lines of action work together to produce abduction in an intact shoulder 2.) to estimate the moment arm changes that take place when the intact rotator cuff goes through surgical repair with either SCR or RSA after complete supraspinatus tear. We hypothesized that the rotator cuff muscles work differently and in combination at the fiber level to bring about a resultant movement that can be assessed through the proposed method of moment arm calculation for intact RC, complete supraspinatus tear, SCR and RSA. Methods: Five fresh cadaveric shoulder specimens were used in an apparatus where each muscle was maintained in tension with the line of action towards its origin on the scapula (Figure 1). An Optotrack camera kept track of digitized points along both the origin and insertion of the rotator cuff muscles as the shoulder was abducted. Using these digitized points, multiple lines of action were created across the breadth of each muscle. Each muscle force action line was then used to calculate moment arm values during 0-90º abduction (Figure 2). Results: Moment arms calculated for multiple fiber lines spanning the tendon attachment site displayed the variance of fiber contribution and function within each muscle during abduction. Our results indicate that rather than providing a return to anatomical shoulder muscle function, RSA and SCR models produce moment arms that vary between muscles, with some contributing more to abduction and some contributing less. Highlighted below are the infraspinatus results for moment arms of individual fiber lines of action (Figure 3) and calculated mean moment arms (Figure 4) over abduction.ANOVA testing demonstrated a significant difference (p<0.001) when analyzing moment arms of intact, complete supraspinatus tear, SCR, and RSA models in teres minor and infraspinatus. There was no significant difference in moment arm values between the models in the subscapularis (p=0.148). Highlighted in Table 1 are the ANOVA testing results for infraspinatus. Conclusions: Our biomechanical analysis demonstrated sufficient sensitivity to detect differences in moment arms of the four rotator cuff muscles across a variety of models, suggesting changes to even one muscle of the shoulder will have significant implications on the function of other shoulder muscles. Furthermore, our analysis of fiber divisions within the same muscle illustrates the complex nature of the shoulder muscles themselves, and future studies should aim to better explore and model their function. The calculated percent differences from intact beautifully illustrated this complexity, as corrective RSA and SCR procedures provided better resemblance of intact anatomy within some rotator cuff muscles while creating a larger percent difference in other muscle groups. By breaking out RC muscles into multiple fibers, more clarity can be gained as to how individual fibers contribute to a muscle’s overall moment arm during abduction. This may further aid surgical decision-making, specifically for RSA where there is continued debate about whether to reconstruct portions of the RC. Given that the supraspinatus tendon is the most frequently torn tendon in the rotator cuff, especially for athletes who apply repetitive stress to the tendon, the results of this study may help inform post-operative rehabilitation by illustrating how abduction and stability are achieved after SCR and RSA.


2021 ◽  
Vol 10 (9) ◽  
pp. 594-601
Author(s):  
Kabelan J. Karunaseelan ◽  
Oliver Dandridge ◽  
Sarah K. Muirhead-Allwood ◽  
Richard J. van Arkel ◽  
Jonathan R. T. Jeffers

Aims In the native hip, the hip capsular ligaments tighten at the limits of range of hip motion and may provide a passive stabilizing force to protect the hip against edge loading. In this study we quantified the stabilizing force vectors generated by capsular ligaments at extreme range of motion (ROM), and examined their ability to prevent edge loading. Methods Torque-rotation curves were obtained from nine cadaveric hips to define the rotational restraint contributions of the capsular ligaments in 36 positions. A ligament model was developed to determine the line-of-action and effective moment arms of the medial/lateral iliofemoral, ischiofemoral, and pubofemoral ligaments in all positions. The functioning ligament forces and stiffness were determined at 5 Nm rotational restraint. In each position, the contribution of engaged capsular ligaments to the joint reaction force was used to evaluate the net force vector generated by the capsule. Results The medial and lateral arms of the iliofemoral ligament generated the highest inbound force vector in positions combining extension and adduction providing anterior stability. The ischiofemoral ligament generated the highest inbound force in flexion with adduction and internal rotation (FADIR), reducing the risk of posterior dislocation. In this position the hip joint reaction force moved 0.8° inbound per Nm of internal capsular restraint, preventing edge loading. Conclusion The capsular ligaments contribute to keep the joint force vector inbound from the edge of the acetabulum at extreme ROM. Preservation and appropriate tensioning of these structures following any type of hip surgery may be crucial to minimizing complications related to joint instability. Cite this article: Bone Joint Res 2021;10(9):594–601.


2021 ◽  
Vol 7 ◽  
pp. e663
Author(s):  
Yaroslav Smirnov ◽  
Denys Smirnov ◽  
Anton Popov ◽  
Sergiy Yakovenko

Deep learning is a relatively new computational technique for the description of the musculoskeletal dynamics. The experimental relationships of muscle geometry in different postures are the high-dimensional spatial transformations that can be approximated by relatively simple functions, which opens the opportunity for machine learning (ML) applications. In this study, we challenged general ML algorithms with the problem of approximating the posture-dependent moment arm and muscle length relationships of the human arm and hand muscles. We used two types of algorithms, light gradient boosting machine (LGB) and fully connected artificial neural network (ANN) solving the wrapping kinematics of 33 muscles spanning up to six degrees of freedom (DOF) each for the arm and hand model with 18 DOFs. The input-output training and testing datasets, where joint angles were the input and the muscle length and moment arms were the output, were generated by our previous phenomenological model based on the autogenerated polynomial structures. Both models achieved a similar level of errors: ANN model errors were 0.08 ± 0.05% for muscle lengths and 0.53 ± 0.29% for moment arms, and LGB model made similar errors—0.18 ± 0.06% and 0.13 ± 0.07%, respectively. LGB model reached the training goal with only 103 samples, while ANN required 106 samples; however, LGB models were about 39 times slower than ANN models in the evaluation. The sufficient performance of developed models demonstrates the future applicability of ML for musculoskeletal transformations in a variety of applications, such as in advanced powered prosthetics.


Author(s):  
Maximilian Melzner ◽  
Lucas Engelhardt ◽  
Ulrich Simon ◽  
Sebastian Dendorfer

Abstract Regarding the prevention of injuries and rehabilitation of the human hand, musculoskeletal simulations using an inverse dynamics approach allow for insights of the muscle recruitment and thus acting forces on the hand. Currently, several hand models from various research groups are in use, which are mainly validated by the comparison of numerical and anatomical moment arms. In contrast to this validation and model-building technique by cadaver studies, the aim of the present study is to further validate a recently published hand model [1] by analyzing numerically calculated muscle activities in comparison to experimentally measured electromyographical signals of the muscles. Therefore, the electromyographical signals of 10 hand muscles of five test subjects performing seven different hand movements were measured. The kinematics of these tasks were used as input for the hand model, and the numerical muscle activities were computed. To analyze the relationship between simulated and measured activities, the time difference of the muscle on- and off-set points were calculated, which resulted in a mean on- and off-set time difference of 0.58 s between the experimental data and the model. The largest differences were detected for movements that mainly addressed the wrist. One major issue comparing simulated and measured muscle activities of the hand is cross-talk. Nevertheless, the results show that the hand model fits the experiment quite accurately despite some limitations and is a further step towards patient-specific modelling of the upper extremity.


2021 ◽  
pp. 175857322110348
Author(s):  
Sohail Qazi ◽  
Steven Regal ◽  
Victor Greco ◽  
Drew Wroblewski ◽  
Patrick J Schimoler ◽  
...  

Hypothesis Single-incision biceps tendon repair with an arthrotunneling device has previously been shown to be a safe and effective technique that provides the anatomic restoration of a two-incision approach and a reduced complication profile. This repair provides adequate and comparable fixation to repairs utilizing anchors, buttons, screws, etc., at a lower cost. Material and methods This study utilized 10 cadaveric specimens. Native and repair specimens were cyclically loaded and graft displacement, flexion/extension (FE) and pronation/supination (PS) moment arms at 12.5° to 152.5° (in 5° increments) before and after repair, and maximum load to failure were measured. Results The FE and PS moment arms and overall maximum moment arms were both significantly larger in the repaired case than in the native case (p < 0.01). Moment arms for supinated specimens were significantly greater than neutral specimens, which in turn was greater than pronated specimens (p < 0.01). The maximum load up to 10 mm of repair displacement was 214.5.0 ± 66.6 N and the repair displacement due to 1000 cycles of 50 N was 2.56 ± 2.06 mm. Conclusion The single-incision arthrotunneling technique is a safe and effective repair that recreates the anatomic footprint and biomechanics of the native biceps and has a reduced complication profile compared to a two-incision approach.


2021 ◽  
Vol 18 (181) ◽  
pp. 20210326
Author(s):  
Mitchell G. A. Wheatley ◽  
Darryl G. Thelen ◽  
Kevin J. Deluzio ◽  
Michael J. Rainbow

The patellofemoral joint plays a crucial mechanical role during walking and running. It increases the knee extensor mechanism's moment arm and reduces the knee extension muscle forces required to generate the extension moment that supports body weight, prevents knee buckling and propels the centre of mass. However, the mechanical implications of moment arm variation caused by patellofemoral and tibiofemoral motion remain unclear. We used a data-driven musculoskeletal model with a 12-degree-of-freedom knee to simulate the knee extension moment arm during walking and running. Using a geometric method to calculate the moment arm, we found smaller moment arms during running than during walking in the swing phase. Overall, knee flexion causes differences between running and walking moment arms as increased flexion causes a posterior shift in the tibiofemoral rotation axis and patella articulation with the distal femur. Moment arms were also affected by knee motion direction and best predicted by separating by direction instead of across the entire gait cycle. Furthermore, we found high inter-subject variation in the moment arm that was largely explained by out-of-plane motion. Our results are consistent with the concept that shorter moment arms increase the effective mechanical advantage of the knee and may contribute to increased running velocity.


Author(s):  
Claire Livet ◽  
Theo Rouvier ◽  
Georges Dumont ◽  
Charles Pontonnier

Abstract The current paper aims at proposing an automatic method to design and adjust simplified muscle paths of a musculoskeletal model. These muscle paths are composed of a limited set of via points and an optimization routine is developed to place these via points on the model in order to fit moment arms and musculotendon lengths input data. The method has been applied to a forearm musculoskeletal model extracted from the literature, using theoretical input data as an example. Results showed that for $75\%$ of the muscle set, the relative root mean square error was under $29.23\%$ for moment arms and of $1.09\%$ for musculotendon lengths with regard to the input data. These results confirm the ability of the method to automatically generate computationally efficient muscle paths for musculoskeletal simulations. Using only via points lowers computational expense compared to paths exhibiting wrapping objects. A proper balance between computational time and anatomical realism should be found to help those models being interpreted by practitioners.


Primates ◽  
2021 ◽  
Author(s):  
Lennart Eigen ◽  
John A. Nyakatura

AbstractCallitrichidae are small, arboreal New World primates that utilize a variety of locomotor behaviors including trunk-to-trunk leaping (TTL) and horizontal locomotion which involve differential functional demands. Little is known about the relationship between the preferred locomotor behavior and musculoskeletal architecture of these primates. In this study, we compared the musculoskeletal architecture of selected shoulder muscles in two cadavers each of the trunk-to-trunk leaper Cebuella pygmaea and the mainly pronograde quadrupedally moving Saguinus imperator subgrisescens. Contrast-enhanced microfocus computed tomography (µCT) was used to virtually dissect the cadavers, produce muscle maps, and create 3D reconstructions for an image-based analysis of the muscles. Muscle lengths, muscle volumes, and osteological muscle moment arms were measured, and the anatomical cross-sectional areas (ACSA) were calculated. We expected the muscles of the forelimb of S. imperator to be larger in volume and to be relatively shorter with a larger ACSA due to a higher demand for powerful extension in the forelimbs of this horizontally locomoting species. For C. pygmaea, we expected relatively larger moment arms for the triceps brachii, supraspinatus, infraspinatus and subscapularis, as larger moment arms present an advantage for extensive vertical clinging on the trunk. The muscles of S. imperator were relatively larger in volume than in C. pygmaea and had a relatively larger ACSA. Thus, the shoulder muscles of S. imperator were suited to generate relatively larger forces than those of C. pygmaea. Contrary to our expectations, there were only slight differences between species in regard to muscle lengths and moment arms, which suggests that these properties are not dependent on the preferred locomotor mode. The study of this limited dataset demonstrates that some but not all properties of the musculoskeletal architecture reflect the preferred locomotor behavior in the two species of Callitrichidae examined.


Sign in / Sign up

Export Citation Format

Share Document