scholarly journals Musculoskeletal modeling of an ostrich (Struthio camelus) pelvic limb: Influence of limb orientation on muscular capacity during locomotion

Author(s):  
John R Hutchinson ◽  
Jeffery W Rankin ◽  
Jonas Rubenson ◽  
Kate H Rosenbluth ◽  
Robert A Siston ◽  
...  

We developed a three-dimensional, biomechanical computer model of the 36 major pelvic limb muscle groups in an ostrich (Struthio camelus) to investigate muscle function in this, the largest of extant birds and model organism for many studies of locomotor mechanics, body size, anatomy and evolution. Combined with experimental data, we use this model to test two main hypotheses. We first query whether ostriches use limb orientations (joint angles) that optimize the moment-generating capacities of their muscles during walking or running. Next, we test whether ostriches use limb orientations at mid-stance that keep their extensor muscles near maximal, and flexor muscles near minimal, moment arms. Our two hypotheses relate to the control priorities that a large bipedal animal might evolve under biomechanical constraints to achieve more effective static weight support. We find that ostriches do not use limb orientations to optimize the moment-generating capacities or moment arms of their muscles. We infer that dynamic properties of muscles or tendons might be better candidates for locomotor optimization. Regardless, general principles explaining why species choose particular joint orientations during locomotion are lacking, raising the question of whether such general principles exist or if clades evolve different patterns (e.g. weighting of muscle force-length or force-velocity properties in selecting postures). This leaves theoretical studies of muscle moment arms estimated for extinct animals at an impasse until studies of extant taxa answer these questions. Finally, we compare our model’s results against those of two prior studies of ostrich limb muscle moment arms, finding general agreement for many muscles. Some flexor and extensor muscles exhibit self-stabilization patterns (posture-dependent switches between flexor/extensor action) that ostriches may use to coordinate their locomotion. However, some conspicuous areas of disagreement in our results illustrate some cautionary principles. Importantly, tendon-travel empirical measurements of muscle moment arms must be carefully designed to preserve 3D muscle geometry lest their accuracy suffer relative to that of anatomically realistic models. The dearth of accurate experimental measurements of 3D moment arms of muscles in birds leaves uncertainty regarding the relative accuracy of different modelling or experimental datasets such as in ostriches. Our model, however, provides a comprehensive set of 3D estimates of muscle actions in ostriches for the first time, emphasizing that avian limb mechanics are highly three-dimensional and complex, and how no muscles act purely in the sagittal plane. A comparative synthesis of experiments and models such as ours could provide powerful synthesis into how anatomy, mechanics and control interact during locomotion and how these interactions evolve. Such a framework could remove obstacles impeding the analysis of muscle function in extinct taxa.

2014 ◽  
Author(s):  
John R Hutchinson ◽  
Jeffery W Rankin ◽  
Jonas Rubenson ◽  
Kate H Rosenbluth ◽  
Robert A Siston ◽  
...  

We developed a three-dimensional, biomechanical computer model of the 36 major pelvic limb muscle groups in an ostrich (Struthio camelus) to investigate muscle function in this, the largest of extant birds and model organism for many studies of locomotor mechanics, body size, anatomy and evolution. Combined with experimental data, we use this model to test two main hypotheses. We first query whether ostriches use limb orientations (joint angles) that optimize the moment-generating capacities of their muscles during walking or running. Next, we test whether ostriches use limb orientations at mid-stance that keep their extensor muscles near maximal, and flexor muscles near minimal, moment arms. Our two hypotheses relate to the control priorities that a large bipedal animal might evolve under biomechanical constraints to achieve more effective static weight support. We find that ostriches do not use limb orientations to optimize the moment-generating capacities or moment arms of their muscles. We infer that dynamic properties of muscles or tendons might be better candidates for locomotor optimization. Regardless, general principles explaining why species choose particular joint orientations during locomotion are lacking, raising the question of whether such general principles exist or if clades evolve different patterns (e.g. weighting of muscle force-length or force-velocity properties in selecting postures). This leaves theoretical studies of muscle moment arms estimated for extinct animals at an impasse until studies of extant taxa answer these questions. Finally, we compare our model’s results against those of two prior studies of ostrich limb muscle moment arms, finding general agreement for many muscles. Some flexor and extensor muscles exhibit self-stabilization patterns (posture-dependent switches between flexor/extensor action) that ostriches may use to coordinate their locomotion. However, some conspicuous areas of disagreement in our results illustrate some cautionary principles. Importantly, tendon-travel empirical measurements of muscle moment arms must be carefully designed to preserve 3D muscle geometry lest their accuracy suffer relative to that of anatomically realistic models. The dearth of accurate experimental measurements of 3D moment arms of muscles in birds leaves uncertainty regarding the relative accuracy of different modelling or experimental datasets such as in ostriches. Our model, however, provides a comprehensive set of 3D estimates of muscle actions in ostriches for the first time, emphasizing that avian limb mechanics are highly three-dimensional and complex, and how no muscles act purely in the sagittal plane. A comparative synthesis of experiments and models such as ours could provide powerful synthesis into how anatomy, mechanics and control interact during locomotion and how these interactions evolve. Such a framework could remove obstacles impeding the analysis of muscle function in extinct taxa.


2021 ◽  
Vol 7 (12) ◽  
pp. eabe2778
Author(s):  
V. R. Allen ◽  
B. M. Kilbourne ◽  
J. R. Hutchinson

Bipedal locomotion evolved along the archosaurian lineage to birds, shifting from “hip-based” to “knee-based” mechanisms. However, the roles of individual muscles in these changes and their evolutionary timings remain obscure. Using 13 three-dimensional musculoskeletal models of the hindlimbs of bird-line archosaurs, we quantify how the moment arms (i.e., leverages) of 35 locomotor muscles evolved. Our results support two hypotheses: From early theropod dinosaurs to birds, knee flexors’ moment arms decreased relative to knee extensors’, and medial long-axis rotator moment arms for the hip increased (trading off with decreased hip abductor moment arms). Our results reveal how, from the Triassic Period, bipedal theropod dinosaurs gradually modified their hindlimb form and function, shifting more from hip-based to knee-based locomotion and hip-abductor to hip-rotator balancing mechanisms inherited by birds. Yet, we also discover unexpected ancestral specializations in larger Jurassic theropods, lost later in the bird-line, complicating the paradigm of gradual transformation.


2010 ◽  
Vol 217 (1) ◽  
pp. 26-37 ◽  
Author(s):  
T. C. Crook ◽  
S. E. Cruickshank ◽  
C. M. McGowan ◽  
N. Stubbs ◽  
A. M. Wilson ◽  
...  

Author(s):  
Bryan Kirking

A muscle / ligament model was constructed to estimate the spinal load that resulted from both muscle and ligament sources during dynamic, three dimensional lifting tasks. The model was tested using data from ten subjects performing lifts over a range of realistic industrial conditions (velocity: 10, 20, or 30 degrees / second; asymmetry: 0, 15, or 30 degrees; and weight lifted: 13.6 or 22.7 Kg). During the task, three dimensional trunk position, trunk velocity, the reaction forces, the reaction moments, and the electromyography of the major trunk musculature were collected. Ligaments were represented in the model as vectors spanning the lumbar spine, with their stress—strain properties taken from the literature. The muscle components were modeled based on the OSU Biodynamic EMG assisted model but excluded any effect not resulting solely from active force generation. Thus, the trunk muscles were also represented by vectors spanning the lumbar spine. For each subject, the model was calibrated for both muscle and ligament moment generation by comparing the predicted moment to the measured applied moment in regions where the appropriate moment component has been shown to dominate. The muscle / ligament model was found to predict the moment at L5/S1 at least as accurately as the muscle—only model (the previously reported OSU Biodynamic EMG assisted model which indirectly combines ligament effects into the muscle effects). Both models predicted moment with an average R square value of 0.8, and average error of 23 N m (p > 0.05). For symmetric upright postures, there was no influence of ligaments so both models predicted similar compression of about 1675 N m. As asymmetry or flexion angle increased, the muscle / ligament model predicted higher compression as a result of the smaller moment arms of the ligaments. In the most extreme posture (40 degrees flexion with 30 degrees asymmetry), the predicted compression from the muscle / ligament model (4250 N) was significantly larger than the muscle—only model (3680N). Finally, all asymmetric conditions resulted in predictions from the muscle / ligament model that exceeded the NIOSH 3400 N tolerance, but only the most asymmetric condition resulted in predictions from the muscle—only model that exceeded the NIOSH limit. Thus, muscle models that do not account for ligament effects may be ineffective in accurately evaluating compression during certain job tasks.


Author(s):  
James R. Jastifer ◽  
Peter A. Gustafson ◽  
Robert R. Gorman

Background: The position, axis, and control of each lower extremity joint intimately affects adjacent joint function as well as whole limb performance. There is little describing the biomechanics of subtalar arthrodesis and none describing the effect that subtalar arthrodesis position has on ankle biomechanics. The purpose of the current study is to establish this effect on sagittal plane ankle biomechanics. Methods: A study was performed utilizing a three-dimensional, validated, computational model of the lower extremity. A subtalar arthrodesis was simulated from 20 degrees of varus to 20 degrees of valgus. For each of these subtalar arthrodesis positions, the ankle dorsiflexor and plantarflexor muscles’ fiber force, moment arm, and moments were calculated throughout a physiologic range of motion. Results: Throughout ankle range of motion, plantarflexion and dorsiflexion strength varies with subtalar arthrodesis position. When the ankle joint is in neutral position, plantarflexion strength is maximized in 10 degrees of subtalar valgus and strength varies by a maximum of 2.6% from the peak 221 Nm. In a similar manner, with the ankle joint in neutral position, dorsiflexion strength is maximized with a subtalar joint arthrodesis in 5 degrees of valgus and strength varies by a maximum of 7.5% from the peak 46.8 Nm. The change in strength is due to affected muscle fiber force generating capacities and muscle moment arms. Conclusion: The clinical significance of this study is that subtalar arthrodesis in a position of 5–10 degrees subtalar valgus has biomechanical advantage. This supports previous clinical outcome studies and offers biomechanical rationale for their generally favorable outcomes.


2007 ◽  
Vol 211 (3) ◽  
pp. 313-324 ◽  
Author(s):  
N. C. Smith ◽  
R. C. Payne ◽  
K. J. Jespers ◽  
A. M. Wilson

PeerJ ◽  
2017 ◽  
Vol 5 ◽  
pp. e3976 ◽  
Author(s):  
Alejandro Otero ◽  
Vivian Allen ◽  
Diego Pol ◽  
John R. Hutchinson

Many of the major locomotor transitions during the evolution of Archosauria, the lineage including crocodiles and birds as well as extinct Dinosauria, were shifts from quadrupedalism to bipedalism (and vice versa). Those occurred within a continuum between more sprawling and erect modes of locomotion and involved drastic changes of limb anatomy and function in several lineages, including sauropodomorph dinosaurs. We present biomechanical computer models of two locomotor extremes within Archosauria in an analysis of joint ranges of motion and the moment arms of the major forelimb muscles in order to quantify biomechanical differences between more sprawling, pseudosuchian (represented the crocodile Crocodylus johnstoni) and more erect, dinosaurian (represented by the sauropodomorph Mussaurus patagonicus) modes of forelimb function. We compare these two locomotor extremes in terms of the reconstructed musculoskeletal anatomy, ranges of motion of the forelimb joints and the moment arm patterns of muscles across those ranges of joint motion. We reconstructed the three-dimensional paths of 30 muscles acting around the shoulder, elbow and wrist joints. We explicitly evaluate how forelimb joint mobility and muscle actions may have changed with postural and anatomical alterations from basal archosaurs to early sauropodomorphs. We thus evaluate in which ways forelimb posture was correlated with muscle leverage, and how such differences fit into a broader evolutionary context (i.e. transition from sprawling quadrupedalism to erect bipedalism and then shifting to graviportal quadrupedalism). Our analysis reveals major differences of muscle actions between the more sprawling and erect models at the shoulder joint. These differences are related not only to the articular surfaces but also to the orientation of the scapula, in which extension/flexion movements in Crocodylus (e.g. protraction of the humerus) correspond to elevation/depression in Mussaurus. Muscle action is highly influenced by limb posture, more so than morphology. Habitual quadrupedalism in Mussaurus is not supported by our analysis of joint range of motion, which indicates that glenohumeral protraction was severely restricted. Additionally, some active pronation of the manus may have been possible in Mussaurus, allowing semi-pronation by a rearranging of the whole antebrachium (not the radius against the ulna, as previously thought) via long-axis rotation at the elbow joint. However, the muscles acting around this joint to actively pronate it may have been too weak to drive or maintain such orientations as opposed to a neutral position in between pronation and supination. Regardless, the origin of quadrupedalism in Sauropoda is not only linked to manus pronation but also to multiple shifts of forelimb morphology, allowing greater flexion movements of the glenohumeral joint and a more columnar forelimb posture.


PeerJ ◽  
2017 ◽  
Vol 5 ◽  
pp. e3866 ◽  
Author(s):  
Hilary M. Clayton ◽  
Sarah Jane Hobbs

BackgroundLocomotion results from the generation of ground reaction forces (GRF) that cause translations of the center of mass (COM) and generate moments that rotate the body around the COM. The trot is a diagonally-synchronized gait performed by horses at intermediate locomotor speeds. Passage is a variant of the trot performed by highly-trained dressage horses. It is distinguished from trot by having a slow speed of progression combined with great animation of the limbs in the swing phase. The slow speed of passage challenges the horse’s ability to control the sagittal-plane moments around the COM. Footfall patterns and peak GRF are known to differ between passage and trot, but their effects on balance management, which we define here as the ability to control nose-up/nose-down pitching moments around the horse’s COM to maintain a state of equilibrium, are not known. The objective was to investigate which biomechanical variables influence pitching moments around the COM in passage.MethodsThree highly-trained dressage horses were captured by a 10-camera motion analysis system (120 Hz) as they were ridden in passage over four force platforms (960 Hz). A full-body marker set was used to track the horse’s COM and measure balance variables including total body center of pressure (COP), pitching moments, diagonal dissociation timing, peak force production, limb protraction–retraction, and trunk posture. A total of twenty passage steps were extracted and partial correlation (accounting for horse) was used to investigate significant (P < 0.05) relationships between variables.ResultsHindlimb mean protraction–retraction correlated significantly with peak hindlimb propulsive forces (R = 0.821;P < 0.01), mean pitching moments (R = 0.546,P = 0.016), trunk range of motion, COM craniocaudal location and diagonal dissociation time (P < 0.05).DiscussionPitching moments around the COM were controlled by a combination of kinematic and kinetic adjustments that involve coordinated changes in GRF magnitudes, GRF distribution between the diagonal limb pairs, and the moment arms of the vertical GRFs. The moment arms depend on hoof placements relative to the COM, which were adjusted by changing limb protraction–retraction angles. Nose-up pitching moments could also be increased by providing a larger hindlimb propulsive GRF.


Author(s):  
Sophie Regnault ◽  
Vivian R. Allen ◽  
Kyle P. Chadwick ◽  
John R. Hutchinson

2002 ◽  
Vol 205 (14) ◽  
pp. 1987-2004 ◽  
Author(s):  
William J. Kargo ◽  
Lawrence C. Rome

SUMMARY Musculoskeletal models have become important tools in understanding motor control issues ranging from how muscles power movement to how sensory feedback supports movements. In the present study, we developed the initial musculotendon subsystem of a realistic model of the frog Rana pipiens. We measured the anatomical properties of 13 proximal muscles in the frog hindlimb and incorporated these measurements into a set of musculotendon actuators. We examined whether the interaction between this musculotendon subsystem and a previously developed skeleton/joint subsystem captured the passive behavior of the real frog's musculoskeletal system. To do this, we compared the moment arms of musculotendon complexes measured experimentally with moment arms predicted by the model. We also compared sarcomere lengths measured experimentally at the starting and take-off positions of a jump with sarcomere lengths predicted by the model at these same limb positions. On the basis of the good fit of the experimental data, we used the model to describe the multi-joint mechanical effects produced by contraction of each hindlimb muscle and to predict muscle trajectories during a range of limb behaviors (wiping, defensive kicking, swimming and jumping). Through these analyses, we show that all hindlimb muscles have multiple functions with respect to accelerating the limb in its three-dimensional workspace and that the balance of functions depends greatly on limb configuration. In addition, we show that muscles have multiple, task-specific functions with respect to the type of contraction performed. The results of this study provide important data regarding the multifunctional role of hindlimb muscles in the frog and form a foundation upon which additional model subsystems (e.g. neural) and more sophisticated muscle models can be appended.


Sign in / Sign up

Export Citation Format

Share Document