scholarly journals Type I and Type II Error Under Random-Effects Misspecification in Generalized Linear Mixed Models

Biometrics ◽  
2007 ◽  
Vol 63 (4) ◽  
pp. 1038-1044 ◽  
Author(s):  
Saskia Litière ◽  
Ariel Alonso ◽  
Geert Molenberghs
2015 ◽  
Vol 26 (3) ◽  
pp. 1130-1145 ◽  
Author(s):  
Susan K Mikulich-Gilbertson ◽  
Brandie D Wagner ◽  
Paula D Riggs ◽  
Gary O Zerbe

Different types of outcomes (e.g. binary, count, continuous) can be simultaneously modeled with multivariate generalized linear mixed models by assuming: (1) same or different link functions, (2) same or different conditional distributions, and (3) conditional independence given random subject effects. Others have used this approach for determining simple associations between subject-specific parameters (e.g. correlations between slopes). We demonstrate how more complex associations (e.g. partial regression coefficients between slopes adjusting for intercepts, time lags of maximum correlation) can be estimated. Reparameterizing the model to directly estimate coefficients allows us to compare standard errors based on the inverse of the Hessian matrix with more usual standard errors approximated by the delta method; a mathematical proof demonstrates their equivalence when the gradient vector approaches zero. Reparameterization also allows us to evaluate significance of coefficients with likelihood ratio tests and to compare this approach with more usual Wald-type t-tests and Fisher’s z transformations. Simulations indicate that the delta method and inverse Hessian standard errors are nearly equivalent and consistently overestimate the true standard error. Only the likelihood ratio test based on the reparameterized model has an acceptable type I error rate and is therefore recommended for testing associations between stochastic parameters. Online supplementary materials include our medical data example, annotated code, and simulation details.


Data ◽  
2020 ◽  
Vol 5 (1) ◽  
pp. 6 ◽  
Author(s):  
Alberto Gianinetti

Germination data are discrete and binomial. Although analysis of variance (ANOVA) has long been used for the statistical analysis of these data, generalized linear mixed models (GzLMMs) provide a more consistent theoretical framework. GzLMMs are suitable for final germination percentages (FGP) as well as longitudinal studies of germination time-courses. Germination indices (i.e., single-value parameters summarizing the results of a germination assay by combining the level and rapidity of germination) and other data with a Gaussian error distribution can be analyzed too. There are, however, different kinds of GzLMMs: Conditional (i.e., random effects are modeled as deviations from the general intercept with a specific covariance structure), marginal (i.e., random effects are modeled solely as a variance/covariance structure of the error terms), and quasi-marginal (some random effects are modeled as deviations from the intercept and some are modeled as a covariance structure of the error terms) models can be applied to the same data. It is shown that: (a) For germination data, conditional, marginal, and quasi-marginal GzLMMs tend to converge to a similar inference; (b) conditional models are the first choice for FGP; (c) marginal or quasi-marginal models are more suited for longitudinal studies, although conditional models lead to a congruent inference; (d) in general, common random factors are better dealt with as random intercepts, whereas serial correlation is easier to model in terms of the covariance structure of the error terms; (e) germination indices are not binomial and can be easier to analyze with a marginal model; (f) in boundary conditions (when some means approach 0% or 100%), conditional models with an integral approximation of true likelihood are more appropriate; in non-boundary conditions, (g) germination data can be fitted with default pseudo-likelihood estimation techniques, on the basis of the SAS-based code templates provided here; (h) GzLMMs are remarkably good for the analysis of germination data except if some means are 0% or 100%. In this case, alternative statistical approaches may be used, such as survival analysis or linear mixed models (LMMs) with transformed data, unless an ad hoc data adjustment in estimates of limit means is considered, either experimentally or computationally. This review is intended as a basic tutorial for the application of GzLMMs, and is, therefore, of interest primarily to researchers in the agricultural sciences.


Sign in / Sign up

Export Citation Format

Share Document