Azaperone and the Hepatic Microsomes : Effects on Cytochrome P-450 Concentration and on NADPH-Cytochrome c-Reductase Activity

2009 ◽  
Vol 32 (3-4) ◽  
pp. 285-288
Author(s):  
Tho J. Pekkanen ◽  
Kalevi Salminen
1979 ◽  
Vol 36 (11) ◽  
pp. 1400-1405 ◽  
Author(s):  
John J. Stegeman

Treatment of Fundulus heteroclitus acclimated to 6.5 °C with benzo(a)pyrene did not elicit any change in the levels of hepatic microsomal NADH- or NADPH-cytochrome c reductase activity, nor in the levels of cytochrome P-450 or its catalytic activities. However, the same treatment offish at 16 5 °C resulted in a marked induction of benzo(a)pyrene hydroxylase and NADPH-cytochrome c reductase. Cytochrome P-450 content was also higher in the warm, treated fish and the Soret maximum of reduced, CO-treated microsomes was shifted to the violet. Levels of aminopyrine demethylase and NADH-cytochrome c reductase activities did not show a significant treatment effect. At neither temperature could treated and control fish be distinguished on the basis of in vitro inhibition of benzo(a)pyrene hydroxylase activity by 7,8-benzoflavone. Levels of NADPH-cytochrome c reductase and benzo(a)pyrene hydroxylase activities were greater in control Fundulus acclimated to 6.5 °C than to 16.5 °C, when normalized to microsomal protein, but not when based on body weight. The results indicate that habitat temperature alone may not affect the capacity for initial hydrocarbon metabolism in fish, but that it can strongly influence the induction of cytochrome P-450. Key words: temperature, cytochrome P-450, hydrocarbon metabolism, mixed-function oxygenase, Fundulus heteroclitus


1973 ◽  
Vol 136 (4) ◽  
pp. 1137-1140 ◽  
Author(s):  
Prabhakar D. Lotlikar ◽  
Kathleen Wertman ◽  
Leida Luha

Pretreatment of hamsters with 3-methylcholanthrene (100mg/kg body wt.) 24h before death did not appreciably change the extent of N-oxide formation when hepatic microsomal preparations were incubated with NN-dimethylaniline as substrate. In contrast, the N-hydroxylation of 2-acetamidofluorene was increased severalfold in hepatic microsomal preparations from pretreated animals. Under these conditions there were no appreciable changes in cytochrome P-450 content and NADPH–cytochrome c reductase activity. On the basis of these comparative data, it is suggested that amine oxidase is not involved in N-hydroxylation of 2-acetamidofluorene.


1989 ◽  
Vol 259 (3) ◽  
pp. 847-853 ◽  
Author(s):  
I Benveniste ◽  
A Lesot ◽  
M P Hasenfratz ◽  
F Durst

Polyclonal antibodies were prepared against NADPH-cytochrome P-450 reductase purified from Jerusalem artichoke. These antibodies inhibited efficiently the NADPH-cytochrome c reductase activity of the purified enzyme, as well as of Jerusalem artichoke microsomes. Likewise, microsomal NADPH-dependent cytochrome P-450 mono-oxygenases (cinnamate and laurate hydroxylases) were efficiently inhibited. The antibodies were only slightly inhibitory toward microsomal NADH-cytochrome c reductase activity, but lowered NADH-dependent cytochrome P-450 mono-oxygenase activities. The Jerusalem artichoke NADPH-cytochrome P-450 reductase is characterized by its high Mr (82,000) as compared with the enzyme from animals (76,000-78,000). Western blot analysis revealed cross-reactivity of the Jerusalem artichoke reductase antibodies with microsomes from plants belonging to different families (monocotyledons and dicotyledons). All of the proteins recognized by the antibodies had an Mr of approx. 82,000. No cross-reaction was observed with microsomes from rat liver or Locusta migratoria midgut. The cross-reactivity generally paralleled well the inhibition of reductase activity: the enzyme from most higher plants tested was inhibited by the antibodies; whereas Gingko biloba, Euglena gracilis, yeast, rat liver and insect midgut activities were insensitive to the antibodies. These results point to structural differences, particularly at the active site, between the reductases from higher plants and the enzymes from phylogenetically distant plants and from animals.


Sign in / Sign up

Export Citation Format

Share Document