polyclonal antibodies
Recently Published Documents


TOTAL DOCUMENTS

2574
(FIVE YEARS 287)

H-INDEX

98
(FIVE YEARS 6)

2022 ◽  
Vol 10 (1) ◽  
pp. 172
Author(s):  
Bruna De Lucca Caetano ◽  
Marta de Oliveira Domingos ◽  
Miriam Aparecida da Silva ◽  
Jessika Cristina Alves da Silva ◽  
Juliana Moutinho Polatto ◽  
...  

The secretion of α-hemolysin by uropathogenic Escherichia coli (UPEC) is commonly associated with the severity of urinary tract infections, which makes it a predictor of poor prognosis among patients. Accordingly, this toxin has become a target for diagnostic tests and therapeutic interventions. However, there are several obstacles associated with the process of α-hemolysin purification, therefore limiting its utilization in scientific investigations. In order to overcome the problems associated with α-hemolysin expression, after in silico prediction, a 20.48 kDa soluble α-hemolysin recombinant denoted rHlyA was constructed. This recombinant is composed by a 182 amino acid sequence localized in the aa542–723 region of the toxin molecule. The antigenic determinants of the rHlyA were estimated by bioinformatics analysis taking into consideration the tertiary form of the toxin, epitope analysis tools, and solubility inference. The results indicated that rHlyA has three antigenic domains localized in the aa555–565, aa600–610, and aa674–717 regions. Functional investigation of rHlyA demonstrated that it has hemolytic activity against sheep red cells, but no cytotoxic effect against epithelial bladder cells. In summary, the results obtained in this study indicate that rHlyA is a soluble recombinant protein that can be used as a tool in studies that aim to understand the mechanisms involved in the hemolytic and cytotoxic activities of α-hemolysin produced by UPEC. In addition, rHlyA can be applied to generate monoclonal and/or polyclonal antibodies that can be utilized in the development of diagnostic tests and therapeutic interventions.


2022 ◽  
Author(s):  
Akihiro Kishikawa ◽  
Satoshi Hamada ◽  
Ichiro Kamei ◽  
Yosuke Fujimoto ◽  
Kazuhiro Miyazaki ◽  
...  

Abstract The cDNA library prepared from Lentinula edodes, Hokken 600 (H600), primordia was screened by using cDNA expressed specifically in Dictyostelium discoideum prestalk as a probe. Twenty-one clones, Le-Dd 1~21, were isolated from the L. edodes primordia cDNA library. Functional analysis of each gene was carried out by transformation into protoplast cells from L. edodes Mori 252 (M252) mycelia with the overexpression vector pLG-RasF1 of each gene because M252 protoplast cells were transformed with 11-fold higher efficiency than H600 cells. Transformants with the overexpression vector of Le-Dd10 formed a fruiting body at almost the same time as H600, a positive control, although M252, a negative control, did not form a fruiting body under culture conditions. This suggested that Le-Dd10 is involved in the formation of fruiting bodies. Single-strand conformation polymorphism analysis revealed that Le-Dd10 is located on No. 4 linkage group of L. edodes. The properties of Le-Dd10 products were investigated by Western blotting analysis using polyclonal antibodies against GST:Le-Dd10 fusion proteins. As a result, 56-kDa, 27-kDa, and 14-kDa protein bands appeared in primordial and fruiting body stages, although the expected molecular weight of the Le-Dd10 product was 50 kDa.


Cells ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 243
Author(s):  
Jacqueline Cordell

The experiences of a laboratory which pioneered the application of monoclonal antibodies to diagnostic histochemistry is described. This was achieved in four key steps: (1) Monoclonal antibodies were successfully produced to replace the difficult-to-produce and limited polyclonal antibodies available for immunohistochemistry. (2) Monoclonal antibodies were produced to improve the immunoenzymatic detection of bound antibodies, using immunoperoxidase or alkaline phosphatase, increasing sensitivity and allowing the use of two chromogens when applied together. The availability of a reliable alkaline phosphatase-based detection allowed the detection of antigens in tissues with high endogenous peroxidase. (3) Methodologies were developed to unmask antigens not detected in routinely processed paraffin-embedded tissue. (4) Synthetic peptides were used as immunising antigens for the direct production of specific molecules of diagnostic interest. This was expanded to include recombinant proteins. Many reacted with fixed tissue and recognised homologous molecules in other species. In addition to these developments, the laboratory promoted the collaboration and training of researchers to spread the expertise of monoclonal production for diagnosis.


2022 ◽  
Author(s):  
Rasel A. Al-Amin ◽  
Phathutshedzo M. Muthelo ◽  
Eldar Abdurakhmanov ◽  
Cecile Vincke ◽  
Serge Muyldermans ◽  
...  

High-quality affinity probes are critical for sensitive and specific protein detection, in particular to detect protein biomarkers at early phases of disease development. Clonal affinity reagents can offer advantages over the commonly used polyclonal antibodies (pAbs) in terms of reproducibility and standardization of such assays. In particular, clonal reagents offer opportunities for site-directed attachment of exactly one modification per affinity reagent at a site designed not to interfere with target binding to help standardize assays. The proximity extension assays (PEA) is a widely used protein assay where pairs of protein-binding reagents are modified with oligonucleotides (oligos), so that their proximal binding to a target protein generates a reporter DNA strand for DNA-assisted readout. The assays have been used for high-throughput multiplexed protein detection of up to a few thousand different proteins in one or a few microliters of plasma. Here we explore nanobodies (Nb) as an alternative to polyclonal antibodies pAbs as affinity reagents for PEA. We describe an efficient site-specific approach for preparing high-quality oligo-conjugated Nb probes via Sortase A (SrtA) enzyme coupling. The procedure allows convenient removal of unconjugated affinity reagents after conjugation. The purified high-grade Nb probes were used in PEA and the reactions provided an efficient means to select optimal pairs of binding reagents from a group of affinity reagents. We demonstrate that Nb-based PEA for interleukin-6 (IL6) detection can augment assay performance, compared to the use of pAb probes. We identify and validate Nb combinations capable of binding in pairs without competition for IL6 antigen detection by PEA.


2022 ◽  
Author(s):  
Xuming Zhang ◽  
Ya-ling Liu ◽  
Ying Cai ◽  
Ying Hao ◽  
Sheng Kang

Abstract Background Ventricular tachycardia (VT) and ventricular fibrillation are the most causes of early death in patients with myocardial infarction (MI). This study was aimed to explore whether LRP6 and its upstream genes circRNA1615 and miR-152-3p modulated the phosphorylation of Connexin-43 (Cx43) via Gαs in ventricular tachycardia of MI. Method we constructed the hypoxia cardiomyocyte model and AMI mice, and explored the modulation relationship of LRP6 and its upstream genes circRNA1615 and miR-152-3p. In addition, the immunoblot analysis with monoclonal and polyclonal antibodies were used to detect whether LRP6 and Cx43 were phosphorylated, further investigated that the LRP6 regulated the phosphorylation of its downstream target Cx43 via G-protein alpha subunit Gαs by using cell transfection, FISH assay, HE staining, RT-qPCR, and Western blot techniques. Result LRP6 mRNA expression was significantly reduced in AMI group compared with the control group. Hypoxia could inhibit the protein and phosphorylation levels of LRP6 and Cx43. The expression of circRNA1615 in AMI mice was significantly decreased, but overexpression of circRNA1615 significantly reversed it. Also overexpression of circRNA1615 could weaken the effect of miR-152-3p mimic, and the miR-152-3p mimic increased the hypoxia injury of LRP6 and Cx43, further LRP6 interference fragments could aggravate hypoxia injury of Cx43. The overexpression of LRP6 could significantly increase the protein level and phosphorylation level of Cx43, but the interference with LRP6 showed the opposite trend. Noticeably, the interference with Gαs weakened the protein and phosphorylation levels of Cx43, however, the interference with LRP6 further inhibited the protein and phosphorylation levels of Cx43. Finally, the transcriptions of circRNA1615 and LRP6 were inhibited in AMI, but the transcription of miR-152-3p was promoted, and the overexpression of circRNA1615 could weaken the damage effect and VT of AMI. Conclusion LRP6 and its upstream genes circRNA1615 and miR-152-3p modulated the phosphorylation of Cx43 via Gαs in ventricular tachycardia of myocardial infarction.


Diagnostics ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 136
Author(s):  
Nitaya Indrawattana ◽  
Pisinee Aiumurai ◽  
Nawannaporn Sae-lim ◽  
Watee Seesuay ◽  
Onrapak Reamtong ◽  
...  

A point-of-care diagnostic for early and rapid diagnosis of scrub typhus caused by Orientia tsutsugamushi is required for prompt and proper treatment of patients presenting with undifferentiated febrile illnesses. In this study, an immunochromatographic antigen detection test kit (ICT AgTK) that targets the highly conserved O. tsutsugamushi 60 kDa GroEL chaperonin (heat shock protein 60) was developed. E. coli-derived recombinant GroEL expressed from DNA coding for the consensus sequence of 32 GroEL gene sequences extracted from the GenBank database was used to immunize rabbits and mice. Rabbit polyclonal antibodies (pAb) were used for preparing a gold-pAb conjugate, and the rGroEL-specific mouse monoclonal antibody was used as the antigen detection reagent at the ICT test line. In-house validation revealed that the ICT AgTK gave 85, 100 and 95% diagnostic sensitivity, specificity and accuracy, respectively, compared to the combined clinical features and standard IFA when tested on 40 frozen serum samples. The test kits correctly identified 10 scrub typhus samples out of 15 fresh plasma/buffy coat samples of patients with febrile illnesses. For independent laboratory validation, the ICT AgTK was sent to one provincial hospital. The ICT AgTK utilized by the hospital medical technologist correctly identified six scrub typhus samples out of 20 serum samples of patients with fever, as confirmed by specific IgM/IgG detection by IFA. The ICT AgTK is easy to perform with rapid turn-around time. It has the potential to be used as an important tool for on-site and early scrub typhus diagnosis by allowing testing of freshly collected samples (serum, plasma or buffy coat), especially in resource-limited healthcare settings.


Vaccines ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 71
Author(s):  
Flavio Di Pisa ◽  
Stefano De Benedetti ◽  
Enrico Mario Alessandro Fassi ◽  
Mauro Bombaci ◽  
Renata Grifantini ◽  
...  

Chagas disease (CD) is a vector-borne parasitosis, caused by the protozoan parasite Trypanosoma cruzi, that affects millions of people worldwide. Although endemic in South America, CD is emerging throughout the world due to climate change and increased immigratory flux of infected people to non-endemic regions. Containing of the diffusion of CD is challenged by the asymptomatic nature of the disease in early infection stages and by the lack of a rapid and effective diagnostic test. With the aim of designing new serodiagnostic molecules to be implemented in a microarray-based diagnostic set-up for early screening of CD, herein, we report the recombinant production of the extracellular domain of a surface membrane antigen from T. cruzi (TcSMP) and confirm its ability to detect plasma antibodies from infected patients. Moreover, we describe its high-resolution (1.62 Å) crystal structure, to which in silico epitope predictions were applied in order to locate the most immunoreactive regions of TcSMP in order to guide the design of epitopes that may be used as an alternative to the full-length antigen for CD diagnosis. Two putative, linear epitopes, belonging to the same immunogenic region, were synthesized as free peptides, and their immunological properties were tested in vitro. Although both peptides were shown to adopt a structural conformation that allowed their recognition by polyclonal antibodies raised against the recombinant protein, they were not serodiagnostic for T. cruzi infections. Nevertheless, they represent good starting points for further iterative structure-based (re)design cycles.


2021 ◽  
Vol 6 (6) ◽  
pp. 134-140
Author(s):  
G. S. Maslak ◽  
◽  
G. P. Chernenko ◽  
S. V. Abramov ◽  
I. Yu. Pismenetska ◽  
...  

The purpose of the study was to investigate the intensity of exposure of peripheral blood lymphocyte surface glycans in patients with B-cell chronic lymphocytic leukemia by measuring the density of lectin- or antigen-positive epitopes under antitumor therapy in order to evaluate it for a more reasonable selection of qualitative and quantitative composition of therapy. Materials and methods. The objects of the study were blood lymphocytes of patients with chronic lymphocytic leukemia (n=15) aged 58-66 years before and after a course of standard chemotherapy according to the COP scheme. The control group consisted of healthy volunteers (n=15) aged 55 to 65 years. Isolation of lymphocytes was performed by a modified method of A. Boyum. Polyclonal antibodies to α1-acid glycoprotein and fibronectin were used. Exposure to Tn antigen and CD43 on blood lymphocytes was determined with secondary antibodies to mouse immunoglobulins conjugated to FITC (Millipore, USA). To study the exposure of glycans on the surface of lymphocytes, we used a set of seven lectins labeled with FITC. Data recording was performed on a Beckman Flower EPICS flow cytometer. Processing of the results was done using the program FCS3 Express. Results and discussion. Compared with the group of hematologically healthy donors on the surface of lymphocytes in patients with chronic lymphocytic leukemia, a 20-fold increase in the density of exposure to ConA epitopes, 10 times – UEAI- and SNA-positive epitopes were shown; MAA II epitope, Tn, and CD43 antigen densities were increased 100-fold (p <0.01). Exposure densities of MAA II-, Tn-, and CD43-positive epitopes on the plasma membrane of lymphocytes in patients with chronic lymphocytic leukemia receiving alkylation therapy decreased 10-fold relative to treatment data, but remained 10-fold higher than in the group of healthy hematologists. Conclusion. On the plasma membranes of lymphocytes in patients with chronic lymphocytic leukemia, the density of exposure of mannose and neuraminic acid residues was significantly increased. COP therapy reduced the density of these epitopes to control values. A significant increase in the density of carcinogenesis markers – Tn- and CD43-antigens on the plasma membranes of lymphocytes in patients with chronic lymphocytic leukemia has been shown. COP therapy provided only a partial decrease in their density, which indicates the insufficient effectiveness of COP therapy, its inability to completely stop the oncological process in patients with chronic lymphocytic leukemia


Diagnostics ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 2346
Author(s):  
Athene Hoi-Ying Lam ◽  
Jian-Piao Cai ◽  
Ka-Yi Leung ◽  
Ricky-Ruiqi Zhang ◽  
Danlei Liu ◽  
...  

Immunofluorescence is a traditional diagnostic method for respiratory viruses, allowing rapid, simple and accurate diagnosis, with specific benefits of direct visualization of antigens-of-interest and quality assessment. This study aims to evaluate the potential of indirect immunofluorescence as an in-house diagnostic method for SARS-CoV-2 antigens from nasopharyngeal swabs (NPS). Three primary antibodies raised from mice were used for immunofluorescence staining, including monoclonal antibody against SARS-CoV nucleocapsid protein, and polyclonal antibodies against SARS-CoV-2 nucleocapsid protein and receptor-binding domain of SARS-CoV-2 spike protein. Smears of cells from NPS of 29 COVID-19 patients and 20 non-infected individuals, and cells from viral culture were stained by the three antibodies. Immunofluorescence microscopy was used to identify respiratory epithelial cells with positive signals. Polyclonal antibody against SARS-CoV-2 N protein had the highest sensitivity and specificity among the three antibodies tested, detecting 17 out of 29 RT-PCR-confirmed COVID-19 cases and demonstrating no cross-reactivity with other tested viruses except SARS-CoV. Detection of virus-infected cells targeting SARS-CoV-2 N protein allow identification of infected individuals, although accuracy is limited by sample quality and number of respiratory epithelial cells. The potential of immunofluorescence as a simple diagnostic method was demonstrated, which could be applied by incorporating antibodies targeting SARS-CoV-2 into multiplex immunofluorescence panels used clinically, such as for respiratory viruses, thus allowing additional routine testing for diagnosis and surveillance of SARS-CoV-2 even after the epidemic has ended with low prevalence of COVID-19.


Sign in / Sign up

Export Citation Format

Share Document