Correlation of dystrophin-glycoprotein complex and focal adhesion complex with myosin heavy chain isoforms in rat skeletal muscle

2009 ◽  
Vol 195 (4) ◽  
pp. 483-494 ◽  
Author(s):  
S. Masuda ◽  
T. Hayashi ◽  
T. Hashimoto ◽  
S. Taguchi
2003 ◽  
Vol 86 (2) ◽  
pp. 201-206 ◽  
Author(s):  
Teet Seene ◽  
Priit Kaasik ◽  
Ando Pehme ◽  
Karin Alev ◽  
Eva-Maria Riso

2011 ◽  
Vol 294 (8) ◽  
pp. 1393-1400 ◽  
Author(s):  
Rodrigo Wagner Alves De Souza ◽  
Andreo Fernando Aguiar ◽  
Fernanda Regina Carani ◽  
Gerson Eduardo Rocha Campos ◽  
Carlos Roberto Padovani ◽  
...  

1997 ◽  
Vol 84 (5) ◽  
pp. 201-204 ◽  
Author(s):  
Karlheinz Hilber ◽  
Stefan Galler ◽  
Dirk Pette

2006 ◽  
Vol 290 (2) ◽  
pp. C411-C419 ◽  
Author(s):  
Elisabeth R. Barton

Loss of the dystrophin glycoprotein complex (DGC) or a subset of its components can lead to muscular dystrophy. However, the patterns of symptoms differ depending on which proteins are affected. Absence of dystrophin leads to loss of the entire DGC and is associated with susceptibility to contractile injury. In contrast, muscles lacking γ-sarcoglycan (γ-SG) display little mechanical fragility and still develop severe pathology. Animals lacking dystrophin or γ-SG were used to identify DGC components critical for sensing dynamic mechanical load. Extensor digitorum longus muscles from 7-wk-old normal (C57), dystrophin- null ( mdx), and γ-SG-null ( gsg−/−) mice were subjected to a series of eccentric contractions, after which ERK1/2 phosphorylation levels were determined. At rest, both dystrophic strains had significantly higher ERK1 phosphorylation, and gsg−/− muscle also had heightened ERK2 phosphorylation compared with wild-type controls. Eccentric contractions produced a significant and transient increase in ERK1/2 phosphorylation in normal muscle, whereas the mdx strain displayed no significant proportional change of ERK1/2 phosphorylation after eccentric contraction. Muscles from gsg−/− mice had no significant increase in ERK1 phosphorylation; however, ERK2 phosphorylation was more robust than in C57 controls. The reduction in mechanically induced ERK1 phosphorylation in gsg−/− muscle was not dependent on age or severity of phenotype, because muscle from both young and old (age 20 wk) animals exhibited a reduced response. Immunoprecipitation experiments revealed that γ-SG was phosphorylated in normal muscle after eccentric contractions, indicating that members of the DGC are modified in response to mechanical perturbation. This study provides evidence that the SGs are involved in the transduction of mechanical information in skeletal muscle, potentially unique from the entire DGC.


Sign in / Sign up

Export Citation Format

Share Document