Intervals of Totally Bounded Group Topologies

1996 ◽  
Vol 806 (1 Papers on Gen) ◽  
pp. 121-129 ◽  
Author(s):  
W.W. COMFORT ◽  
DIETER REMUS
1982 ◽  
Vol 101 (1) ◽  
pp. 123-132 ◽  
Author(s):  
S. Janakiraman ◽  
T. Soundararajan

2001 ◽  
Vol 114 (3) ◽  
pp. 273-284 ◽  
Author(s):  
Hans-Peter A. Künzi ◽  
Attila Losonczi
Keyword(s):  

2013 ◽  
Vol 29 (2) ◽  
pp. 267-273
Author(s):  
MIHAIL URSUL ◽  
◽  
MARTIN JURAS ◽  

We prove that every infinite nilpotent ring R admits a ring topology T for which (R, T ) has an open totally bounded countable subring with trivial multiplication. A new example of a compact ring R for which R2 is not closed, is given. We prove that every compact Bezout domain is a principal ideal domain.


1986 ◽  
Vol 28 (1) ◽  
pp. 31-36 ◽  
Author(s):  
P. Fletcher ◽  
W. F. Lindgren

The notation and terminology of this paper coincide with that of reference [4], except that here the term, compactification, refers to a T1-space. It is known that a completely regular totally bounded Hausdorff quasi-uniform space (X, ) has a Hausdorff compactification if and only if contains a uniformity compatible with ℱ() [4, Theorem 3.47]. The use of regular filters by E. M. Alfsen and J. E. Fenstad [1] and O. Njåstad [5], suggests a construction of a compactification, which differs markedly from the construction obtained in [4]. We use this construction to show that a totally bounded T1 quasi-uniform space has a compactification if and only if it is point symmetric. While it is pleasant to have a characterization that obtains for all T1-spaces, the present construction has several further attributes. Unlike the compactification obtained in [4], the compactification given here preserves both total boundedness and uniform weight, and coincides with the uniform completion when the quasi-uniformity under consideration is a uniformity. Moreover, any quasi-uniformly continuous map from the underlying quasi-uniform space of the compactification onto any totally bounded compact T1-space has a quasi-uniformly continuous extension to the compactification. If is the Pervin quasi-uniformity of a T1-space X, the compactification we obtain is the Wallman compactification of (X, ℱ ()). It follows that our construction need not provide a Hausdorff compactification, even when such a compactification exists; but we obtain a sufficient condition in order that our compactification be a Hausdorff space and note that this condition is satisfied by all uniform spaces and all normal equinormal quasi-uniform spaces. Finally, we note that our construction is reminiscent of the completion obtained by Á. Császár for an arbitrary quasi-uniform space [2, Section 3]; in particular our Theorem 3.7 is comparable with the result of [2, Theorem 3.5].


2011 ◽  
Vol 158 (14) ◽  
pp. 1831-1835
Author(s):  
Karim Boulabiar ◽  
Fouad Gdara
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document