In vivo corneal confocal microscopy allows direct observation of microbiological features in infectious keratitis

2014 ◽  
Vol 92 ◽  
pp. 0-0
Author(s):  
E WYLEGALA ◽  
A SMEDOWSKI ◽  
D TARNAWSKA ◽  
A NOWINSKA ◽  
D DOBROWOLSKI
2005 ◽  
Vol 25 (3) ◽  
pp. 254-260 ◽  
Author(s):  
Joanna G. Hollingsworth ◽  
Nathan Efron ◽  
Andrew B. Tullo

2019 ◽  
Vol 65 (3) ◽  
pp. 174-183
Author(s):  
Natalya G. Mokrysheva ◽  
Sergey L. Kiselev ◽  
Natalia V. Klementieva ◽  
Anna M. Gorbacheva ◽  
Ivan I. Dedov

Confocal microscopy is a modern imaging method that provides ample opportunities for in vitro and in vivo research. The clinical part of the review focuses on well-established techniques, such as corneal confocal microscopy for the diagnosis of diabetic neuropathy or endocrine ophthalmopathy; new methods are briefly described (intraoperative evaluation of tissues obtained by removing pituitary adenomas, thyroid and parathyroid glands). In the part devoted to fundamental research, the use of confocal microscopy to characterize the colocalization of proteins, as well as three-dimensional intracellular structures and signaling pathways in vivo, is considered. Indicators of intracellular calcium are analyzed.


2021 ◽  
Author(s):  
Eduardo Rojas Alvarez

The cornea is the ocular refractive medium with the greatest refractive power of the eye. The study of it is of vital importance for the diagnosis and follow-up of ophthalmological diseases with the aim of achieving high standards of visual acuity in our patients. Confocal microscopy of the cornea allows in-depth study of it, quickly, safely, painlessly, obtaining high-resolution images of the corneal sublayers. This chapter summarizes the procedure for performing corneal confocal microscopy, the normal characteristics of the tissue with real images of our patients, as well as a brief explanation of the main applications of this technology in the study of corneal dystrophies (keratoconus), in refractive surgery, corneal transplantation, infectious keratitis, glaucoma filtration bulla, among other topics.


2020 ◽  
Author(s):  
Megan E. McCarron ◽  
Rachel L. Weinberg ◽  
Jessica M. Izzi ◽  
Suzanne E. Queen ◽  
Stuti L. Misra ◽  
...  

AbstractPurposeTo characterize corneal subbasal nerve plexus morphologic features using in vivo corneal confocal microscopy (IVCM) in normal and SIV-infected macaques and to implement automated assessments using novel deep learning-based methods customized for macaque studies.MethodsIn vivo corneal confocal microscopy images were collected from both male and female age-matched specific-pathogen free rhesus and pigtailed macaques housed at the Johns Hopkins University breeding colony using the Heidelberg HRTIII with Rostock Corneal Module. We also obtained repeat IVCM images of 12 SIV-infected animals including pre-infection and 10 day post-SIV infection time-points. All IVCM images were analyzed using a novel deep convolutional neural network architecture developed specifically for macaque studies.ResultsDeep learning-based segmentation of subbasal nerves in IVCM images from macaques demonstrated that corneal nerve fiber length (CNFL) and fractal dimension measurements did not differ between species, but pigtailed macaques had significantly higher baseline corneal nerve fiber tortuosity than rhesus macaques (P = 0.005). Neither sex nor age of macaques was associated with differences in any of the assessed corneal subbasal nerve parameters. In the SIV/macaque model of HIV, acute SIV infection induced significant decreases in both corneal nerve fiber length and fractal dimension (P= 0.01 and P= 0.008 respectively).ConclusionsThe combination of IVCM and objective, robust, and rapid deep-learning analysis serves as a powerful noninvasive research and clinical tool to track sensory nerve damage, enabling early detection of neuropathy. Adapting the deep-learning analyses to human corneal nerve assessments will refine our ability to predict and monitor damage to small sensory nerve fibers in a number of clinical settings including HIV, multiple sclerosis, Parkinson’s disease, diabetes, and chemotherapeutic neurotoxicity.


2014 ◽  
Vol 55 (4) ◽  
pp. 2071 ◽  
Author(s):  
Ioannis N. Petropoulos ◽  
Uazman Alam ◽  
Hassan Fadavi ◽  
Andrew Marshall ◽  
Omar Asghar ◽  
...  

2021 ◽  
Vol 7 (1) ◽  
pp. 205521732199806
Author(s):  
Ayşe Altıntaş ◽  
Ayse Yildiz-Tas ◽  
Sezen Yilmaz ◽  
Betul N Bayraktutar ◽  
Melis Cansu Comert ◽  
...  

Background Neuromyelitis optica spectrum disorder (NMOSD) is an inflammatory autoimmune disorder that damages optic nerves, brainstem, and spinal cord. In vivo corneal confocal microscopy (IVCM) is a noninvasive technique that provides corneal images with dendritic cells (DCs) and corneal subbasal nerve plexus (SBP), which arises from the trigeminal nerve. Objective We investigated corneal SBP changes in NMOSD and proposed IVCM as a potential new disease severity biomarker for NMOSD. Methods Seventeen age-sex matched NMOSD patients and 19 healthy participants underwent complete neurologic and ophthalmologic examinations. The duration of disease, first symptom, presence of optic neuritis attack, antibody status, Expanded Disability Status Scale(EDSS) score and disease severity score(DSS) were recorded. Retinal nerve fibre layer (RNFL) thickness was measured with optical coherence tomography, and corneal SBP images were taken with IVCM. Results NMOSD patients had significantly reduced corneal nerve fibre lenght-density and corneal nerve branch lenght-density compared with controls, while DC density was increased. NMOSD patients also showed significantly reduced RNFL thickness compared with controls. EDSS,DSS levels were inversely correlated with IVCM parameters. Conclusion We observed significant corneal nerve fibre loss in NMOSD patients in relation to disease severity. IVCM can be a candidate noninvasive imaging method for axonal damage assessment in NMOSD that warrants further investigation.


Sign in / Sign up

Export Citation Format

Share Document