scholarly journals ESTIMATING SARB'S POLICY REACTION RULE

2007 ◽  
Vol 75 (4) ◽  
pp. 659-680 ◽  
Author(s):  
alberto ortiz ◽  
federico sturzenegger
Keyword(s):  
Author(s):  
Benjamin P. Kellman ◽  
Yujie Zhang ◽  
Emma Logomasini ◽  
Eric Meinhardt ◽  
Austin W. T. Chiang ◽  
...  

AbstractSystems glycobiology aims to provide models and analysis tools that account for the biosynthesis, regulation, and interactions with glycoconjugates. To facilitate these methods, there is a need for a clear glycan representation accessible to both computers and humans. Linear Code, a linearized and readily parsable glycan structure representation, is such a language. For this reason, Linear Code was adapted to represent reaction rules, but the syntax has drifted from its original description to accommodate new and originally unforeseen challenges. Here, we delineate the consensuses and inconsistencies that have arisen through this adaptation. We recommend options for a consensus-based extension of Linear Code that can be used for reaction rule specification going forward. Through this extension and specification of Linear Code to reaction rules, we aim to minimize inconsistent symbology thereby making glycan database queries easier. With a clear guide for generating reaction rule descriptions, glycan synthesis models will be more interoperable and reproducible thereby moving glycoinformatics closer to compliance with FAIR standards. Reaction rule-extended Linear Code is an unambiguous representation for describing glycosylation reactions in both literature and code.


2017 ◽  
Author(s):  
Aravind Sankar ◽  
Sayan Ranu ◽  
Karthik Raman

AbstractThe ability to predict pathways for biosynthesis of metabolites is very important in metabolic engineering. It is possible to mine the repertoire of biochemical transformations from reaction databases, and apply the knowledge to predict reactions to synthesize new molecules. However, this usually involves a careful understanding of the mechanism and the knowledge of the exact bonds being created and broken. There is clearly a need for a method to rapidly predict reactions for synthesizing new molecules, which relies only on the structures of the molecules, without demanding additional information such as thermodynamics or hand-curated information such as atom-atom mapping, which are often hard to obtain accurately.We here describe a robust method based on subgraph mining, to predict a series of biochemical transformations, which can convert between two (even previously unseen) molecules. We first describe a reliable method based on subgraph edit distance to map reactants and products, using only their chemical structures. Having mapped reactants and products, we identify the reaction centre and its neighbourhood, the reaction signature, and store this in a reaction rule network. This novel representation enables us to rapidly predict pathways, even between previously unseen molecules. We also propose a heuristic that predominantly recovers natural biosynthetic pathways from amongst hundreds of possible alternatives, through a directed search of the reaction rule network, enabling us to provide a reliable ranking of the different pathways. Our approach scales well, even to databases with > 100,000 reactions. A Java-based implementation of our algorithms is available at https://github.com/RamanLab/ReactionMinerCCS CONCEPTS•Information systems →Data mining; •Applied computing →Bioinformatics;


2020 ◽  
Vol 16 ◽  
pp. 2645-2662
Author(s):  
Benjamin P Kellman ◽  
Yujie Zhang ◽  
Emma Logomasini ◽  
Eric Meinhardt ◽  
Karla P Godinez-Macias ◽  
...  

Systems glycobiology aims to provide models and analysis tools that account for the biosynthesis, regulation, and interactions with glycoconjugates. To facilitate these methods, there is a need for a clear glycan representation accessible to both computers and humans. Linear Code, a linearized and readily parsable glycan structure representation, is such a language. For this reason, Linear Code was adapted to represent reaction rules, but the syntax has drifted from its original description to accommodate new and originally unforeseen challenges. Here, we delineate the consensuses and inconsistencies that have arisen through this adaptation. We recommend options for a consensus-based extension of Linear Code that can be used for reaction rule specification going forward. Through this extension and specification of Linear Code to reaction rules, we aim to minimize inconsistent symbology thereby making glycan database queries easier. With a clear guide for generating reaction rule descriptions, glycan synthesis models will be more interoperable and reproducible thereby moving glycoinformatics closer to compliance with FAIR standards. Here, we present Linear Code for Reaction Rules (LiCoRR), version 1.0, an unambiguous representation for describing glycosylation reactions in both literature and code.


Author(s):  
Adrian Paschke ◽  
Harold Boley

Event-driven reactive functionalities are urgently needed in present-day distributed systems and dynamic Web-based environments. Reaction rules constitute a promising approach to specify and program such reactive systems in a declarative manner. In particular, they provide the ability to reason over events, actions and their effects, and allow detecting events and responding to them automatically. Various reaction rule approaches have been developed, which for the most part have been advanced separately, hence led to different views and terminologies. This chapter surveys and classifies the wide variety of rule-based calculi approaches, engines and languages for event, action and state processing, and describes their main features. Founded on the original formalisms, major lines of development are traced to the present and extrapolated to the future.


1997 ◽  
Author(s):  
Alberto Ortiz ◽  
Federico Sturzenegger
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document