scholarly journals Development of amplified fragment length polymorphism (AFLP)-derived specific primer for the detection of Fusarium solani aetiological agent of peanut brown root rot

2013 ◽  
Vol 114 (6) ◽  
pp. 1782-1792 ◽  
Author(s):  
F. Casasnovas ◽  
E.N. Fantini ◽  
J.M. Palazzini ◽  
G. Giaj-Merlera ◽  
S.N. Chulze ◽  
...  
2005 ◽  
Vol 28 (2) ◽  
pp. 267-270 ◽  
Author(s):  
Michelle Mantovani Gonçalves ◽  
Manoel Victor Franco Lemos ◽  
Pedro Manoel Galetti Junior ◽  
Patrícia Domingues de Freitas ◽  
Manuel Antonio Andrade Furtado Neto

2005 ◽  
Vol 83 (10) ◽  
pp. 1322-1328 ◽  
Author(s):  
Yong-Bi Fu ◽  
Bruce E. Coulman ◽  
Yasas S.N. Ferdinandez ◽  
Jacques Cayouette ◽  
Paul M. Peterson

Fringed brome ( Bromus ciliatus L.) is found in native stands throughout a large area of North America. Little is known about the genetic diversity of this species. The amplified fragment length polymorphism (AFLP) technique was applied to assess the genetic diversity of 16 fringed brome populations sampled in Canada from the provinces of Alberta, British Columbia, Quebec, and Saskatchewan. Four AFLP primer pairs were employed to screen 82 samples with four to six samples per population and 83 polymorphic AFLP bands scored for each sample. The frequencies of the scored bands in all assayed samples ranged from 0.01 to 0.99 and averaged 0.53. Analysis of molecular variance revealed that 52.6% of the total AFLP variation resided among the 16 populations and 20.6% among the four provinces. The five Quebec populations appeared to be genetically the most diverse and distinct. The AFLP variability observed was significantly associated with the geographic origins of the fringed brome populations. These findings are useful for sampling fringed brome germplasm from natural populations for germplasm conservation and should facilitate the development of genetically diverse regional cultivars for habitat restoration and revegetation.


Sign in / Sign up

Export Citation Format

Share Document