Challenges in sutureless aortic valve implantation with minimal invasive technique

Author(s):  
Abdulkerim Özhan ◽  
Mehmet Şenel Bademci ◽  
Cemal Kocaaslan ◽  
Fatih Avni Bayraktar ◽  
Defne Cansu Karamanlı ◽  
...  
Author(s):  
Denis R. Merk ◽  
Mohamed Esmail Karar ◽  
Claire Chalopin ◽  
David Holzhey ◽  
Volkmar Falk ◽  
...  

Objective Aortic valve stenosis is one of the most frequently acquired valvular heart diseases, accounting for almost 70% of valvular cardiac surgery. Transapical transcatheter aortic valve implantation has recently become a suitable minimally invasive technique for high-risk and elderly patients with severe aortic stenosis. In this article, we aim to automatically define a target area of valve implantation, namely, the area between the coronary ostia and the lowest points of two aortic valve cusps. Therefore, we present a new image-based tracking method of these aortic landmarks to assist in the placement of aortic valve prosthesis under live 2D fluoroscopy guidance. Methods We propose a rigid intensity-based image registration technique for tracking valve landmarks in 2D fluoroscopic image sequences, based on a real-time alignment of a contrast image including the initialized manual valve landmarks to each image of sequence. The contrast image is automatically detected to visualize aortic valve features when the aortic root is filled with a contrast agent. Results Our registration-based tracking method has been retrospectively applied to 10 fluoroscopic image sequences from routine transapical aortic valve implantation procedures. Most of all tested fluoroscopic images showed a successful tracking of valve landmarks, especially for the images without contrast agent injections. Conclusions A new intraoperative image-based method has been developed for tracking aortic valve landmarks in live 2D fluoroscopic images to assist transapical aortic valve implantations and to increase the overall safety of surgery as well.


Author(s):  
Rakesh M. Suri ◽  
Harold M. Burkhart ◽  
Hartzell V. Schaff

Objective Percutaneous aortic valve implantation within native valve calcium has progressed to clinical use despite the absence of data proving equivalence to complete surgical excision and prosthetic valve replacement. A novel self-expanding sutureless bovine pericardial prosthesis (Sorin Perceval) derived from a proven stented valve has been successfully used in humans recently through an open transaortic approach. We sought to develop a minimally invasive technique for native aortic valve excision and sutureless prosthetic aortic valve replacement using robot assistance. Methods The da Vinci S-HD system was used to open and suspend the pericardium anterior to the phrenic nerve in cadavers. A transthoracic cross-clamp was placed across the midascending aorta, following which a transverse aortotomy was made. The native aortic valve cusps were excised, and annular calcium was removed with robotic instruments. After placement of three guide sutures, the Perceval self-expanding pericardial prosthesis mounted on a flexible delivery system was inserted through a working port and lowered into the aortic annulus. Results Successful implantation of all valves was possible using a 3-cm right second intercostal space working port, along with two additional 1-cm instrument ports. A standard transverse aortotomy was sufficient for examination/debridement of the native aortic valve cusps, sizing of the annulus, and deployment of the nitinol-stented, bovine pericardial prosthesis. Delivery, seating, and stability of the device were easily confirmed above and below the aortic valve annulus using the robotic camera. Conclusions Complete excision of diseased native aortic valve cusps with robot assistance facilitates accurate and reproducible aortic valve replacement using a novel self-expanding sutureless version of a proven bovine pericardial prosthesis. This approach is comparable to the current surgical gold standard and is ready for clinical use as an alternative to percutaneous aortic valve implantation.


2010 ◽  
Vol 58 (S 01) ◽  
Author(s):  
M Wolf ◽  
R Sodian ◽  
P Boekstegers ◽  
M Primaychenko ◽  
G Juchem ◽  
...  

2010 ◽  
Vol 58 (S 01) ◽  
Author(s):  
J Blumenstein ◽  
J Kempfert ◽  
S Lehmann ◽  
A van Linden ◽  
D Merk ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document