Benefits of the antioxidant and anti-inflammatory activity of etoricoxib in the prevention of ovarian ischemia/reperfusion injury induced experimentally in rats

2014 ◽  
Vol 40 (6) ◽  
pp. 1674-1679 ◽  
Author(s):  
Omer Erkan Yapca ◽  
Mehmet Ibrahim Turan ◽  
Ismayil Yilmaz ◽  
Suleyman Salman ◽  
Mine Gulapoglu ◽  
...  
Author(s):  
Mohammad M Al-bataineh ◽  
Carol L Kinlough ◽  
Zaichuan Mi ◽  
Edwin Kerry Jackson ◽  
Stephanie Mutchler ◽  
...  

Cell-associated kidney injury molecule-1 (KIM-1) exerts an anti-inflammatory role following kidney injury by mediating efferocytosis and downregulating the NF-kB pathway. KIM-1 cleavage blunts its anti-inflammatory activities. We reported that Mucin 1 (MUC1) is protective in a mouse model of ischemia-reperfusion injury (IRI). As both KIM-1 and MUC1 are induced in the proximal tubule (PT) during IRI and are ADAM17 substrates, we tested the hypothesis that MUC1 protects KIM-1 activity. Muc1 KO mice and wild-type (WT) littermates were subjected to IRI. KIM-1, MUC1 and ADAM17 levels (and signaling pathways) were assessed by immunoblotting. PT localization was assessed by confocal microscopy and in situ proximity ligation assay. Findings were extended using human kidneys and urine, and KIM-1-mediated efferocytosis assays in mouse PT cultures. In response to tubular injury in mouse and human kidneys, we observed induction and co-expression of KIM-1 and MUC1 in the PT. Compared to WT, Muc1 KO mice had higher urinary KIM-1 and lower kidney KIM-1. KIM-1 was apical in PT of WT kidneys, but predominately with luminal debris in Muc1 KO mice. Efferocytosis was reduced in Muc1 KO PT cultures when compared to WT cells, while inflammation was increased in Muc1 KO kidneys when compared to WT mice. MUC1 was cleaved by ADAM17 in PT cultures, and blocked KIM-1 shedding in MDCK cells. We conclude that KIM-1-mediated efferocytosis and thus anti-inflammatory activity during IRI is preserved in the injured kidney by MUC1 inhibition of KIM-1 shedding.


2021 ◽  
Author(s):  
Mohammad M Al-bataineh ◽  
Carol L Kinlough ◽  
Zaichuan Mi ◽  
Edwin K Jackson ◽  
Stephanie Mutchler ◽  
...  

Cell-associated kidney injury molecule-1 (KIM-1) exerts an anti-inflammatory role following kidney injury by mediating efferocytosis and down regulating the NF-kB pathway. KIM-1 cleavage blunts its anti inflammatory activities. We reported that Mucin 1 (MUC1) is protective in a mouse model of ischemia reperfusion injury (IRI). As both KIM-1 and MUC1 are induced in the proximal tubule (PT) during IRI and are ADAM17 substrates, we tested the hypothesis that MUC1 protects KIM-1 activity. Muc1 KO mice and wild type (WT) littermates were subjected to IRI. KIM-1, MUC1 and ADAM17 levels (and signaling pathways) were assessed by immunoblotting. PT localization was assessed by confocal microscopy and in situ35proximity ligation assay. Findings were extended using human kidneys and urine, and KIM-1-mediated efferocytosis assays in mouse PT cultures.In response to tubular injury in mouse and human kidneys, we observed induction and co-expression of KIM-1 and MUC1 in the PT. Compared to WT, Muc1 KO mice had higher urinary KIM-1 and lower kidney KIM-1. KIM-1 was apical in PT of WT kidneys, but predominately with luminal debris in Muc1 KO mice. Efferocytosis was reduced in Muc1 KO PT cultures when compared to WT cells, while inflammation was increased in Muc1 KO kidneys when compared to WT mice. MUC1 was cleaved by ADAM17 in PT cultures, and blocked KIM-1 shedding in MDCK cells. We conclude that KIM-1-mediated efferocytosis and thus anti-inflammatory activity during IRI is preserved in the injured kidney by MUC1 inhibition of KIM-1 shedding.


2001 ◽  
Vol 120 (2) ◽  
pp. 460-469 ◽  
Author(s):  
Atsushi Nakajima ◽  
Koichiro Wada ◽  
Hiroshi Miki ◽  
Naoto Kubota ◽  
Noriko Nakajima ◽  
...  

2020 ◽  
Vol 2020 ◽  
pp. 1-12 ◽  
Author(s):  
Naren Bao ◽  
Bing Tang ◽  
Junke Wang

Acute kidney injury (AKI) is one of the most common and troublesome perioperative complications. Dexmedetomidine (DEX) is a potent α2-adrenoceptor (α2-AR) agonist with anti-inflammatory and renoprotective effects. In this study, a rat renal ischemia–reperfusion injury (IRI) model was induced. At 24 h after reperfusion, the IRI-induced damage and the renoprotection of DEX preconditioning were confirmed both biochemically and histologically. Changes in nuclear factor-kappa B (NF-κB), as well as its downstream anti-inflammatory factor A20 and proinflammatory factor tumor necrosis factor-α (TNF-α), were detected. Atipamezole, a nonselective antagonist, was then added 5 min before the administration of DEX to further analyze DEX’s effects on NF-κB, and another anti-inflammatory medicine, methylprednisolone, was used in comparison with DEX, to further analyze DEX’s effects on NF-κB. Different concentrations of DEX (0 nM, 0.1 nM, 1 nM, 10 nM, 100 nM, 1 μM, and 10 μM) were applied to preincubated human renal tubular epithelial cell line (HK-2) cells in vitro. After anoxia and reoxygenation, the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) tetrazolium assay and enzyme-linked immunosorbent assay (ELISA) were performed to evaluate the levels of NF-κB downstream anti-inflammatory cytokines. The results showed that, unlike methylprednisolone, DEX preconditioning led to a time-dependent biphasic change (first activation then inhibition) of NF-κB in the rat renal IRI models that were given 25 μg/kg i.p. It was accompanied by a similarly biphasic change of TNF-α and an early and persistent upregulation of A20. In vitro, DEX’s cellular protection showed a concentration-dependent biphasic change which was protective within the range of 0 to 100 nM but became opposite when concentrations are greater than 1 μM. The changes in the A20 and NF-κB messenger RNA (mRNA) levels were consistent with the renoprotective ability of DEX. In other words, DEX preconditioning protected the rats from renal IRI via regulation biphasic change of NF-κB signaling.


Sign in / Sign up

Export Citation Format

Share Document