scholarly journals The anti-inflammatory effects of curcumin on renal ischemia-reperfusion injury in rats

Renal Failure ◽  
2018 ◽  
Vol 40 (1) ◽  
pp. 680-686 ◽  
Author(s):  
Jiong Zhang ◽  
Li Tang ◽  
Gui Sen Li ◽  
Jia Wang
2020 ◽  
Vol 2020 ◽  
pp. 1-12 ◽  
Author(s):  
Naren Bao ◽  
Bing Tang ◽  
Junke Wang

Acute kidney injury (AKI) is one of the most common and troublesome perioperative complications. Dexmedetomidine (DEX) is a potent α2-adrenoceptor (α2-AR) agonist with anti-inflammatory and renoprotective effects. In this study, a rat renal ischemia–reperfusion injury (IRI) model was induced. At 24 h after reperfusion, the IRI-induced damage and the renoprotection of DEX preconditioning were confirmed both biochemically and histologically. Changes in nuclear factor-kappa B (NF-κB), as well as its downstream anti-inflammatory factor A20 and proinflammatory factor tumor necrosis factor-α (TNF-α), were detected. Atipamezole, a nonselective antagonist, was then added 5 min before the administration of DEX to further analyze DEX’s effects on NF-κB, and another anti-inflammatory medicine, methylprednisolone, was used in comparison with DEX, to further analyze DEX’s effects on NF-κB. Different concentrations of DEX (0 nM, 0.1 nM, 1 nM, 10 nM, 100 nM, 1 μM, and 10 μM) were applied to preincubated human renal tubular epithelial cell line (HK-2) cells in vitro. After anoxia and reoxygenation, the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) tetrazolium assay and enzyme-linked immunosorbent assay (ELISA) were performed to evaluate the levels of NF-κB downstream anti-inflammatory cytokines. The results showed that, unlike methylprednisolone, DEX preconditioning led to a time-dependent biphasic change (first activation then inhibition) of NF-κB in the rat renal IRI models that were given 25 μg/kg i.p. It was accompanied by a similarly biphasic change of TNF-α and an early and persistent upregulation of A20. In vitro, DEX’s cellular protection showed a concentration-dependent biphasic change which was protective within the range of 0 to 100 nM but became opposite when concentrations are greater than 1 μM. The changes in the A20 and NF-κB messenger RNA (mRNA) levels were consistent with the renoprotective ability of DEX. In other words, DEX preconditioning protected the rats from renal IRI via regulation biphasic change of NF-κB signaling.


Inflammation ◽  
2017 ◽  
Vol 40 (4) ◽  
pp. 1310-1318 ◽  
Author(s):  
Mohammad Ali Amirzargar ◽  
Faramarz Yaghubi ◽  
Mohammad Hosseinipanah ◽  
Mohammad Jafari ◽  
Mona Pourjafar ◽  
...  

2021 ◽  
pp. ASN.2020121723 ◽  
Author(s):  
Sho Hasegawa ◽  
Tsuyoshi Inoue ◽  
Yasuna Nakamura ◽  
Daichi Fukaya ◽  
Rie Uni ◽  
...  

BackgroundThe sympathetic nervous system regulates immune cell dynamics. However, the detailed role of sympathetic signaling in inflammatory diseases is still unclear because it varies according to the disease situation and responsible cell types. This study focused on identifying the functions of sympathetic signaling in macrophages in LPS-induced sepsis and renal ischemia-reperfusion injury (IRI).MethodsWe performed RNA sequencing of mouse macrophage cell lines to identify the critical gene that mediates the anti-inflammatory effect of β2-adrenergic receptor (Adrb2) signaling. We also examined the effects of salbutamol (a selective Adrb2 agonist) in LPS-induced systemic inflammation and renal IRI. Macrophage-specific Adrb2 conditional knockout (cKO) mice and the adoptive transfer of salbutamol-treated macrophages were used to assess the involvement of macrophage Adrb2 signaling.ResultsIn vitro, activation of Adrb2 signaling in macrophages induced the expression of T cell Ig and mucin domain 3 (Tim3), which contributes to anti-inflammatory phenotypic alterations. In vivo, salbutamol administration blocked LPS-induced systemic inflammation and protected against renal IRI; this protection was mitigated in macrophage-specific Adrb2 cKO mice. The adoptive transfer of salbutamol-treated macrophages also protected against renal IRI. Single-cell RNA sequencing revealed that this protection was associated with the accumulation of Tim3-expressing macrophages in the renal tissue.ConclusionsThe activation of Adrb2 signaling in macrophages induces anti-inflammatory phenotypic alterations partially via the induction of Tim3 expression, which blocks LPS-induced systemic inflammation and protects against renal IRI.


Sign in / Sign up

Export Citation Format

Share Document