scholarly journals Thermal metamorphism of CM chondrites: A dehydroxylation‐based peak‐temperature thermometer and implications for sample return from asteroids Ryugu and Bennu

Author(s):  
Michael A. Velbel ◽  
Michael E. Zolensky
2009 ◽  
Vol 26 (3) ◽  
pp. 289-296 ◽  
Author(s):  
Josep M. Trigo-Rodriguez ◽  
Jürgen Blum

AbstractRelatively small amounts (typically between 2 and 200 ppm) of presolar grains have been preserved in the matrices of chondritic meteorites. The measured abundances of the different types of grains are highly variable from one chondrite to another, but are higher in unequilibrated chondrites that have experienced little or no aqueous alteration and/or metamorphic heating than in processed meteorites. A general overview of the abundances measured in presolar grains (particularly the recently identified presolar silicates) contained in primitive chondrites is presented. Here we will focus on the most primitive chondrite groups, as typically the highest measured abundances of presolar grains occur in primitive chondrites that have experienced little thermal metamorphism. Looking at the most aqueously altered chondrite groups, we find a clear pattern of decreasing abundance of presolar silicate grains with increasing levels of aqueous alteration. We conclude that measured abundances of presolar grains in altered chondrites are strongly biased by their peculiar histories. Scales quantifying the intensity of aqueous alteration and shock metamorphism in chondrites could correlate with the content of presolar silicates. To do this it would be required to infer the degree of destruction or homogenization of presolar grains in the matrices of primitive meteorites. To get an unbiased picture of the relative abundance of presolar grains in the different regions of the protoplanetary disk where first meteorites consolidated, future dedicated studies of primitive meteorites, IDPs, and collected materials from sample-return missions (like e.g. the planned Marco Polo) are urgently required.


Icarus ◽  
2020 ◽  
Vol 339 ◽  
pp. 113593 ◽  
Author(s):  
Elsa Amsellem ◽  
Frédéric Moynier ◽  
Brandon Mahan ◽  
Pierre Beck

2011 ◽  
Vol E94-B (11) ◽  
pp. 2961-2968
Author(s):  
Takahide MIZUNO ◽  
Kousuke KAWAHARA ◽  
Kazuhiko YAMADA ◽  
Yukio KAMATA ◽  
Tetsuya YAMADA ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document