presolar grains
Recently Published Documents


TOTAL DOCUMENTS

98
(FIVE YEARS 9)

H-INDEX

22
(FIVE YEARS 1)

Author(s):  
Nan Liu

This is an advance summary of a forthcoming article in the Oxford Research Encyclopedia of Planetary Science. Please check back later for the full article. Presolar grains are dust produced by stars that died before the formation of the Earth’s solar system. Stardust grains condense out of cooling gas lost via stellar winds from the surface of low-mass stars and stellar explosions and become a constituent of interstellar medium (ISM). About 4.6 Ga, a molecular cloud in the ISM collapsed to form the solar system, during which some primordial stardust grains from the ISM survived and were incorporated into small bodies formed in the early solar system. Some of these small solar system bodies, including asteroids and comets, escaped planet formation and have remained minimally altered, thus preserving their initially incorporated presolar grains. Fragments of asteroids and comets are collected on Earth as interplanetary dust particles (IDPs) and meteorites. Presolar grains have been found in primitive IDPs and chondrites—stony meteorites that have not been modified by either melting or differentiation of their parent bodies. Presolar grains, typically less than a few μm, are identified in primitive extraterrestrial materials by their unique isotopic signatures, revealing the effects of galactic chemical evolution (GCE), stellar nucleosynthesis, and cosmic ray exposure. Comparisons of presolar grain isotope data with stellar observations and nucleosynthesis model calculations suggest that presolar grains were dominantly sourced from asymptotic giant branch stars and core-collapse supernovae, although there are still ambiguities in assigning the type of star to some groups of grains. So far, various presolar phases have been identified such as corundum, olivine, and silicon carbide, reflecting diverse condensation environments in different types of stars. The abundances of different presolar phases in primitive extraterrestrial materials vary widely, ranging from a few percent for presolar silicates to a few parts per million for presolar oxides. Presolar grain studies rely on the synergy between astronomy, astrophysics, nuclear physics, and cosmochemistry. To understand the stellar sources of presolar grains, it is important to compare isotope data of presolar grains to astronomical observations for different types of stellar objects. When such astronomical observations are unavailable, stellar nucleosynthesis models must be relied upon, which require inputs of (a) initial stellar composition estimated based on solar system nuclide abundances, (b) stellar evolution models, and (c) nuclear reaction rates determined by theories and laboratory experiments. Once the stellar source of a group of presolar grains is ascertained, isotope information extracted from the grains can then be used to constrain stellar mixing processes, nuclear reaction rates, GCE, and the ISM residence times of the grains. In addition, crystal structures and chemical compositions of presolar grains can provide information to infer dust condensation conditions in their parent stars, while abundances of presolar grains in primitive chondrites can help constrain secondary processing experienced by the parent asteroids of their host chondrites. Since the discovery of presolar grains in meteorites in 1980s, a diverse array of information about stars and GCE has been gleaned by studying them. Technological advances will likely allow for the discovery of additional types of presolar grains and analysis of smaller, more typical presolar grains in the future.


2021 ◽  
Vol 27 (S1) ◽  
pp. 2786-2789
Author(s):  
Sheryl Singerling ◽  
Larry Nittler ◽  
Elena Dobrica ◽  
Adrian Brearley ◽  
Rhonda Stroud

2021 ◽  
Vol 53 (4) ◽  
Author(s):  
Larry Nittler ◽  
Rhonda Stroud

2020 ◽  
Vol 905 (1) ◽  
pp. 80
Author(s):  
Akshat Garg ◽  
Kuljeet K. Marhas ◽  
Vikram Goyal

2020 ◽  
Vol 102 (3) ◽  
Author(s):  
G. Lotay ◽  
D. T. Doherty ◽  
D. Seweryniak ◽  
M. P. Carpenter ◽  
R. V. F. Janssens ◽  
...  
Keyword(s):  

2020 ◽  
Vol 124 (25) ◽  
Author(s):  
A. R. L. Kennington ◽  
G. Lotay ◽  
D. T. Doherty ◽  
D. Seweryniak ◽  
C. Andreoiu ◽  
...  
Keyword(s):  

2020 ◽  
Author(s):  
Luc Lajaunie ◽  
Manish N. Sanghani ◽  
William D.A. Rickard ◽  
José. J. Calvino ◽  
Kuljeet K. Marhas ◽  
...  

<p><strong>Introduction </strong>Primitive extraterrestrial materials like carbonaceous chondrite matrices and interplanetary dust particles contain tiny dust grains that were formed in the winds of red giant branch, or asymptotic giant branch stars (AGB) and in the ejecta of novae and supernovae (SNe) explosions before the formation of our solar system. Presolar grains survived all the processes that created our solar system and carry the signatures of their parent stellar sources. Correlating isotopic data of individual presolar silicates with microstructural and chemical analyses obtained by STEM, provides a unique opportunity to provide better insights into physiochemical conditions of grain formation in stellar environments, grain alteration in the interstellar and parent body processes and also helps constraining various astrophysical grain condensation models. In this work, isotopic, structural and chemical analysis of nine presolar silicate grains from the CH3/CBb3 chondrite Isheyevo and CR2 chondrite NWA801 are reported.</p><p><strong>Experimental </strong>Presolar oxygen anomalous grain search using oxygen isotope imaging was done in-situ using NanoSIMS50 ion microprobe and five grains from AGB and four grains from SNe, were selected for (S)TEM investigations. The TEM lamellas were prepared using a TESCAN LYRA3 FIB-SEM at Curtin University. Structural and chemical analysis of presolar grains were performed by combining high-resolution scanning TEM imaging, spatially-resolved electron energy-loss spectroscopy (EELS) and spatially-resolved energy-dispersive X-ray spectroscopy (EDS) by using a FEI Titan Cubed Themis 60-300 microscope at Cádiz University which was operated at 200 kV. EDS quantification was corrected by using a standard reference sample of known composition and density and by taking into account the thickness of the probed area by using low-loss EELS. EELS spectrum images for fine structures (mostly, O-K, Si-L<sub>2,3 </sub>and Fe-L<sub>2,3</sub> edges) analyses were acquired with the monochromator excited allowing an energy resolution of about 0.4 eV. After denoising using principal components analysis and removal of the multiple scattering, we were able to map the heterogeneities related to the Fe oxidation state and to the oxygen local chemical environment. This allowed us to compare the degree of aqueous alteration of the grain with the surrounding rim and matrix grains.</p><p><strong>Results </strong>TEM and STEM data have revealed a strong heterogeneity and a broad range of structural and chemical compositions of the grains that enabled us to compare the stellar grain condensation environments (e.g. AGB stars and SNe), and suggest widely varying formation conditions for the presolar silicates identified in this study. Only one of the grains originally condensed as an amorphous grain has shown preferential sputtering of Mg, indicating that Mg-rich amorphous grains are not preferentially destroyed. Several grains are found with signatures that represent interstellar, nebular and parent body alteration. An oldhamite-like grain within a presolar enstatite grain is probably the first observation of an oldhamite grain as a seed grain for the condensation of an enstatite grain in stellar atmospheres. All these results, which will be discussed in detail, point out the importance of coordinated isotopic, microstructural and chemical studies of presolar silicates to investigate the processes that may have played a role in shaping our solar system.</p>


2019 ◽  
Vol 55 (6) ◽  
pp. 1160-1175 ◽  
Author(s):  
Larry R. Nittler ◽  
Rhonda M. Stroud ◽  
Conel M. O'D. Alexander ◽  
Kaitlin Howell

Sign in / Sign up

Export Citation Format

Share Document