shock metamorphism
Recently Published Documents


TOTAL DOCUMENTS

170
(FIVE YEARS 23)

H-INDEX

31
(FIVE YEARS 2)

2022 ◽  
Vol 9 (1) ◽  
Author(s):  
Jinping Hu ◽  
Thomas G. Sharp

AbstractThe goal of classifying shock metamorphic features in meteorites is to estimate the corresponding shock pressure conditions. However, the temperature variability of shock metamorphism is equally important and can result in a diverse and heterogeneous set of shock features in samples with a common overall shock pressure. In particular, high-pressure (HP) minerals, which were previously used as a solid indicator of high shock pressure in meteorites, require complex pressure–temperature–time (P–T–t) histories to form and survive. First, parts of the sample must be heated to melting temperatures, at high pressure, to enable rapid formation of HP minerals before pressure release. Second, the HP minerals must be rapidly cooled to below a critical temperature, before the pressure returns to ambient conditions, to avoid retrograde transformation to their low-pressure polymorphs. These two constraints require the sample to contain large temperature heterogeneities, e.g. melt veins in a cooler groundmass, during shock. In this study, we calculated shock temperatures and possible P–T paths of chondritic and differentiated mafic–ultramafic rocks for various shock pressures. These P–T conditions and paths, combined with observations from shocked meteorites, are used to constrain shock conditions and P–T–t histories of HP-mineral bearing samples. The need for rapid thermal quench of HP phases requires a relatively low bulk-shock temperature and therefore moderate shock pressures below ~ 30 GPa, which matches the stabilities of these HP minerals. The low-temperature moderate-pressure host rock generally shows moderate shock-deformation features consistent with S4 and, less commonly, S5 shock stages. Shock pressures in excess of 50 GPa in meteorites result in melt breccias with high overall post-shock temperatures that anneal out HP-mineral signatures. The presence of ringwoodite, which is commonly considered an indicator of the S6 shock stage, is inconsistent with pressures in excess of 30 GPa and does not represent shock conditions different from S4 shock conditions. Indeed, ringwoodite and coexisting HP minerals should be considered as robust evidence for moderate shock pressures (S4) rather than extreme shock (S6) near whole-rock melting.


2021 ◽  
Author(s):  
Jinping Hu ◽  
Thomas Sharp

Abstract The goal of classifying shock metamorphic features in meteorites is to estimate the corresponding shock pressure conditions. However, the temperature variability of shock metamorphism is equally important and can result in a diverse and heterogeneous set of shock features in samples with a common overall shock pressure. In particular, high-pressure (HP) minerals, which were previously used as a solid indicator of high shock pressure in meteorites, require complex pressure-temperature-time (P-T-t) histories to form and survive. First, parts of the sample must be heated to the melting temperatures, at high pressure, to enable rapid formation of HP minerals before pressure release. Second, the HP minerals must be rapidly cooled to below a critical temperature, before the pressure returns to ambient conditions, to avoid retrograde transformation to their low-pressure polymorphs. These two constraints require the sample to contain large temperature heterogeneities, e.g. melt veins in a cooler groundmass, during shock. In this study, we calculated shock temperatures and possible P-T paths of chondritic and differentiated mafic rocks for various shock pressures. These P-T conditions and paths, combined with observations from shocked meteorites, are used to constrain shock conditions and P-T-t histories of HP-mineral bearing samples. The need for rapid thermal quench of HP phases requires a relatively low bulk-shock temperature and therefore moderate shock pressures below ~ 30 GPa, which matches the stabilities of these HP minerals. The low-temperature moderate-pressure host rock generally shows moderate shock-deformation features consistent with S4 and, less commonly, S5 shock stages. Shock pressures in excess of 50 GPa in meteorites result in melt breccias with high overall post-shock temperatures that anneal out HP-mineral signatures. The presence of ringwoodite, which is commonly considered an indicator of the S6 shock stage, is inconsistent with pressures in excess of 30 GPa and does not represent shock conditions different from S4 shock conditions. Indeed, ringwoodite and coexisting HP minerals should be considered as robust evidence for moderate shock pressures (S4) rather than extreme shock (S6) near whole-rock melting.


Icarus ◽  
2021 ◽  
pp. 114687
Author(s):  
Auriol S.P. Rae ◽  
Michael H. Poelchau ◽  
Thomas Kenkmann

Minerals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 899
Author(s):  
Zhipeng Xia ◽  
Bingkui Miao ◽  
Chuantong Zhang ◽  
Hongyi Chen ◽  
Lanfang Xie ◽  
...  

Lunar meteorites are the fragments of rocks that fell on Earth because of the impacts of asteroids on the Moon. Such rocks preserve information about the composition, evolutionary process, and shock history of the lunar surface. NWA 13120 is a recently discovered lunar breccia meteorite having features of strong shock, which is composed of lithic and mineral clasts in a matrix of very fine-grained (<10 μm) and recrystallized olivine-plagioclase with a poikilitic-like texture. As the most abundant lithic clasts, the crystalline impact melt (CIM) clasts can be divided into four types according to their texture and mineral composition: (1) anorthosites or troctolitic anorthosite with a poikilitic-like texture, but the mineral content is different from that of the matrix; (2) anorthosites containing basaltic fragments and rich in vesicles; (3) troctolitic anorthosite containing metamorphic olivine mineral fragments; (4) troctolitic anorthosite containing troctolite fragments. Based on the petrology and mineralogy, NWA 13120 is a lunar meteorite that was derived from the ferrous anorthosite suite (FANs) of the lunar highlands, while its texture suggests it is a crystalline impact melt breccia. In addition, we infer that the parent rock of NWA 13120 is a lunar regolith breccia enriched in glass fragments. During the shock process, at pressures of more than 20 GPa, all plagioclase fragments were transformed into maskelynites, and olivine fragments occurred metamorphism. The post-shock temperature led to the partial melting of the basaltic fragments. Subsequently, all glass with diverse components in the parent rock were devitrified and recrystallized, forming the common olivine-plagioclase poikilitic-like texture and different CIM clasts. Meanwhile, the devitrification of maskelynite formed the accumulation of a large number of plagioclase microcrystals. Therefore, NWA 13120 is a meteorite of great significance for understanding the local shock metamorphism of lunar rocks on the lunar surface.


2021 ◽  
Author(s):  
Nicole Güldemeister ◽  
Juulia Moreau ◽  
Tomas Kohout ◽  
Kai Wünnemann ◽  
Robert Luther

2021 ◽  
Vol 35 (2) ◽  
pp. 315-321
Author(s):  
Theofilos TOULKERIDIS ◽  
◽  
Richard Caleb ECHEGARAY-AVEIGA ◽  
Karen Paola MARTINEZ-MALDONADO ◽  
◽  
...  

In the past of the earth several asteroids and meteoroids have been impacted, but most of these collisions have been eroded and today there are only sometimes direct and indirect indications, such as massive extinctions of species in the form of fossils, layers with content of extraterrestrial material among others. Based on our recent reconnaissance in the field in 2017, we have been able to identify a new impact of a meteorite on volcanic rock of the Miocene Tarqui Formation in central Ecuador. We were able to reveal and reconstruct the corresponding trajectory as well as its impact day being in 1995. Based on known impacts in South America, this is the very first to have been impacted on rocks, which would lead to a clear shock metamorphism. This discovery of the impact on a rock may soon be a major tourist attraction of the country due to its accessibility and importance for being unique in Ecuador and on the continent.


Sign in / Sign up

Export Citation Format

Share Document