Mesophyll conductance to CO2 and Rubisco as targets for improving intrinsic water use efficiency in C3 plants

2015 ◽  
Vol 39 (5) ◽  
pp. 965-982 ◽  
Author(s):  
J. Flexas ◽  
A. Díaz-Espejo ◽  
M. A. Conesa ◽  
R. E. Coopman ◽  
C. Douthe ◽  
...  
2014 ◽  
Vol 41 (6) ◽  
pp. 568 ◽  
Author(s):  
Eisrat Jahan ◽  
Jeffrey S. Amthor ◽  
Graham D. Farquhar ◽  
Richard Trethowan ◽  
Margaret M. Barbour

CO2 diffusion from substomatal intercellular cavities to sites of carboxylation in chloroplasts (mesophyll conductance; gm) limits photosynthetic rate and influences leaf intrinsic water-use efficiency (A/gsw). We investigated genotypic variability of gm and effects of gm on A/gsw among eleven wheat (Triticum aestivum L.) genotypes under light-saturated conditions and at either 2 or 21% O2. Significant variation in gm and A/gsw was found between genotypes at both O2 concentrations, but there was no significant effect of O2 concentration on gm. Further, gm was correlated with photosynthetic rate among the 11 genotypes, but was unrelated to stomatal conductance. The effect of leaf age differed between genotypes, with gm being lower in older leaves for one genotype but not another. This study demonstrates a high level of variation in gm between wheat genotypes; 0.5 to 1.0 μmol m−2 s−1 bar−1. Further, leaf age effects indicate that great care must be taken to choose suitable leaves in studies of genotypic variation in gm and water-use efficiency.


2021 ◽  
Author(s):  
Xiaojin Bing ◽  
Keyan Fang ◽  
Xiaoying Gong ◽  
Wenzhi Wang ◽  
Chenxi Xu ◽  
...  

Abstract The carbon isotope fractionation value (Δ) has been widely used to infer the intrinsic water use efficiency (iWUE) of C3 plants. Currently, the most commonly used iWUE method (expressed as iWUE tra ) in tree rings assumes that the mesophyll conductance in plants is infinite. However, many observation-based studies have pointed out that such an assumption leads to overestimating the impact of carbon dioxide (CO 2 ) on intrinsic water use efficiency in plants. In this study, a constant g s /g m ratio (0.79) was introduced for calculating iWUE (expressedas iWUE mes ). We applied this iWUE mes model to our newly developed intra-annual (10 samples per ring) Δ 13 C chronology of Cryptomeria fortunei tree for 1965–2017 at Gu Mountain Area and our annual Δ 13 C chronology of Pinus massoniana tree for 1865–2014 at Niumulin Natural Reserve in southeast China. Using dendrochronology techniques, our analysis revealed that the current iWUE tra model overestimates the iWUE values by approximately 2 times and that the iWUE value of trees inferred from iWUE mes modelling decreased significantly in summer-autumn time, which may indicate that alternative factors play a role in limiting the degree of iWUE improvement under the drought-stressed forest in southeast China.


2020 ◽  
Vol 229 (3) ◽  
pp. 1326-1338
Author(s):  
Wei Ting Ma ◽  
Guillaume Tcherkez ◽  
Xu Ming Wang ◽  
Rudi Schäufele ◽  
Hans Schnyder ◽  
...  

2020 ◽  
Vol 126 (6) ◽  
pp. 981-990
Author(s):  
Nara O Vogado ◽  
Klaus Winter ◽  
Nerea Ubierna ◽  
Graham D Farquhar ◽  
Lucas A Cernusak

Abstract Background and aims The stable carbon isotope ratio of leaf dry matter (δ 13Cp) is generally a reliable recorder of intrinsic water-use efficiency in C3 plants. Here, we investigated a previously reported pattern of developmental change in leaf δ 13Cp during leaf expansion, whereby emerging leaves are initially 13C-enriched compared to mature leaves on the same plant, with their δ 13Cp decreasing during leaf expansion until they eventually take on the δ 13Cp of other mature leaves. Methods We compiled data to test whether the difference between mature and young leaf δ 13Cp differs between temperate and tropical species, or between deciduous and evergreen species. We also tested whether the developmental change in δ 13Cp is indicative of a concomitant change in intrinsic water-use efficiency. To gain further insight, we made online measurements of 13C discrimination (∆ 13C) in young and mature leaves. Key Results We found that the δ 13Cp difference between mature and young leaves was significantly larger for deciduous than for evergreen species (−2.1 ‰ vs. −1.4 ‰, respectively). Counter to expectation based on the change in δ 13Cp, intrinsic water-use efficiency did not decrease between young and mature leaves; rather, it did the opposite. The ratio of intercellular to ambient CO2 concentrations (ci/ca) was significantly higher in young than in mature leaves (0.86 vs. 0.72, respectively), corresponding to lower intrinsic water-use efficiency. Accordingly, instantaneous ∆ 13C was also higher in young than in mature leaves. Elevated ci/ca and ∆ 13C in young leaves resulted from a combination of low photosynthetic capacity and high day respiration rates. Conclusion The decline in leaf δ 13Cp during leaf expansion appears to reflect the addition of the expanding leaf’s own 13C-depleted photosynthetic carbon to that imported from outside the leaf as the leaf develops. This mixing of carbon sources results in an unusual case of isotopic deception: less negative δ 13Cp in young leaves belies their low intrinsic water-use efficiency.


2018 ◽  
Vol 76 (2) ◽  
pp. 115-130 ◽  
Author(s):  
G Guo ◽  
K Fang ◽  
J Li ◽  
HW Linderholm ◽  
D Li ◽  
...  

Crop Science ◽  
2002 ◽  
Vol 42 (1) ◽  
pp. 122 ◽  
Author(s):  
A. G. Condon ◽  
R. A. Richards ◽  
G. J. Rebetzke ◽  
G. D. Farquhar

Sign in / Sign up

Export Citation Format

Share Document