The novel HLA‐A*02:916 allele identified in a Brazilian candidate donor for bone marrow donation

HLA ◽  
2020 ◽  
Vol 96 (1) ◽  
pp. 89-90 ◽  
Author(s):  
Romulo Vianna ◽  
Danielle Secco ◽  
Angela Santos ◽  
Luís Cristóvão Porto
HLA ◽  
2019 ◽  
Vol 94 (4) ◽  
pp. 365-366 ◽  
Author(s):  
Vinicius N. Stelet ◽  
Rafael F. Cita ◽  
Matilde Romero ◽  
Maristela F. Mendes ◽  
Renata Binato

HLA ◽  
2019 ◽  
Vol 94 (4) ◽  
pp. 366-367 ◽  
Author(s):  
Vinicius N. Stelet ◽  
Matilde Romero ◽  
Eliana Abdelhay ◽  
Maristela F. Mendes ◽  
Rafael F. Cita

HLA ◽  
2019 ◽  
Vol 95 (3) ◽  
pp. 208-209 ◽  
Author(s):  
Romulo Vianna ◽  
Danielle Secco ◽  
Angela Santos ◽  
Luís Cristóvão Porto

HLA ◽  
2019 ◽  
Vol 94 (5) ◽  
pp. 454-455 ◽  
Author(s):  
Romulo Vianna ◽  
Angela Santos ◽  
Juliana Motta ◽  
Luís Cristóvão Porto

HLA ◽  
2019 ◽  
Vol 95 (3) ◽  
pp. 228-229 ◽  
Author(s):  
Romulo Vianna ◽  
Danielle Secco ◽  
Angela Santos ◽  
Luís Cristóvão Porto

HLA ◽  
2020 ◽  
Vol 96 (1) ◽  
pp. 90-91 ◽  
Author(s):  
Romulo Vianna ◽  
Danielle Secco ◽  
Angela Santos ◽  
Luís Cristóvão Porto

Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 37-38
Author(s):  
Hussein A Abbas ◽  
Feng Wang ◽  
Yue Wei ◽  
Hui Yang ◽  
Guillermo Montalban Bravo ◽  
...  

Background: Aberrant mRNA splicing occurs in myeloid malignancies and affects genes involved in tumor suppression, heme biosynthesis and mitochondrial iron metabolism. Functional studies demonstrated impaired cellular differentiation upon targeting of aberrant splice variants. Hypomethylating agents (HMA) constitute the backbone of therapy of myeloid malignancies. Whether HMA treatment in myeloid malignancies alters the novel splicing transcriptional landscape and whether it correlates with responses remain largely unexplored. Methods: Total RNA sequencing was done on CD34+ cells from 79 patients bone marrow samples involved by acute myeloid leukemia (AML), myelodysplastic syndrome (MDS), chronic myelomonocytic leukemia (CMML), TF1 cell lines and CD34+ murine bone marrow cells. Novel alternatively spliced transcripts were detected using SplAdder and included the following splicing events: alterative 3' splice junction, alternative 5' splice junction, exon skipping, intron retention, multiple exon skipping and mutually exclusive exons. All alternatively splicing events were normalized to total transcript count in order to correct for total transcript levels. A false discovery rate of <0.1 was used to identify significant events. Results: A total of 79 myeloid disease patients (27.8% females, 72.1% males) with a median age of 70 years (range, 31-87 years) were included in this study. In aggregate analysis of all 79 myeloid malignancies (39.2% (n=31) pre-treatment and 60.8% (n=48) post-treatment), there were 160 versus 37 (4.3 folds), 112 versus 40 (2.8 folds), 292 versus 51 (5.7 folds), 172 versus 80 (2.1 folds) and 29 versus 9 (3.2 folds) and 2 versus 0 novel splicing events occurring in pre- versus post- HMA treatment, respectively, in alterative 3' splice junction, alternative 5' splice junction, exon skipping, intron retention, multiple exon skipping and mutually exclusive exons, respectively. This suggested that treatment with HMA led to downregulation of novel alternative splicing events after normalization to total transcripts. However, upon excluding AML patients from the analysis, there were no significant events associated with treatment suggesting that the findings could be due to random events. To further explore whether HMA therapy influenced novel splicing events, we examined the novel splicing pattern in 7 MDS patients with paired BM samples at pre- and post-HMA and found no significant differences in alternative splicing events before and after the treatment. We then examined TF1 (human erythroleukemia) cell lines at pre- and post- HMA time points, but did not identify notable differences in the novel alternative splicing events with respect to HMA treatment. To assess whether CD34+ bone marrow cells from mice treated with hypomethylating agents have differential novel alternatively spliced events, we conducted similar analysis and did not find any discernible differences pre- and post- HMA treatment. These findings suggest that HMA does not influence novel alternative splicing events. Conclusions: Aberrant splicing has been linked to myeloid neoplasms especially myelodysplastic syndrome with mutations in splice variant genes. Our findings suggest that HMA does not influence novel alternative splicing events in myeloid malignancies. Therefore, the alternative splicing in myeloid disease is inherent to the disease and not affected by treatment. Disclosures Garcia-Manero: H3 Biomedicine: Research Funding; Novartis: Research Funding; Bristol-Myers Squibb: Consultancy, Research Funding; Merck: Research Funding; Celgene: Consultancy, Honoraria, Research Funding; Onconova: Research Funding; Acceleron Pharmaceuticals: Consultancy, Honoraria; Amphivena Therapeutics: Research Funding; Genentech: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding; Helsinn Therapeutics: Consultancy, Honoraria, Research Funding; Jazz Pharmaceuticals: Consultancy; Astex Pharmaceuticals: Consultancy, Honoraria, Research Funding; AbbVie: Honoraria, Research Funding.


Circulation ◽  
2007 ◽  
Vol 116 (suppl_16) ◽  
Author(s):  
Wilfried Schgoer ◽  
Margot Egger ◽  
Arno Peer ◽  
Johannes Jeschke ◽  
Ivan Tancevski ◽  
...  

Introduction - Secretoneurin (SN) represents a sensory, inflammatory neuropeptide which was recently demonstrated to act as an angiogenic and vasculogenic cytokine in vitro and in vivo. The present study was conducted to test the hypothesis that SN may be implicated in reparative angiogenesis. Furthermore, we challenged the healing potential of SN applied as a newly generated SN gene therapy vector in the setting of limb ischemia. Methods and Results - We cloned the human SN coding sequence into the pAAV plasmid containing a cytomegalovirus enhancer/promoter sequence. Bioactivity of recombinant SN was shown by proliferative and chemotactic activity on endothelial cells in vitro. Unilateral limb ischemia was induced in C57/bl mice by femoral artery resection. By Real Time PCR, Western Blotting, SN-specific RIA and Immunhistochemistry, we documented that SN is up-regulated in ischemic muscles. Next, we tested whether SN gene therapy may exert curative effects in this ischemia model. Injection of the SN plasmid into ischemic adductor muscles increased capillary (0.67 vs. 0.35, n = 24, p = 0.02) and arteriole (0.16 vs. 0.8, n = 24, p = 0.04) density, reduced endothelial cell apoptosis, and accelerated perfusion recovery as shown by Laser Doppler Perfusion Index (LDPI ratio ischemic/control leg after 28 days of ischemia 1.1 vs. 0.7, n = 24, p < 0.01) in comparson to pAAV-GFP (green-fluorescence protein) treated mice. Furthermore, SN gene therapy significantly reduced toe necrosis of ischemic limbs compared to control animals (26% vs. 50%, n = 24, p < 0.05). In bone marrow transplantation models, increased vascularity of ischemic hind-limbs after SN gene therapy was shown to be mediated, at least in part, by enhanced recruitment of bone marrow-derived endothelial progenitor cells. Conclusions -These results suggest that the novel angiogenic cytokine Secretoneurin is up-regulated by ischemia in skeletal muscle cells. Furthermore, results from gene therapy in this ischemia model suggest that Secretoneurin represent a promising new substance for therapeutic angiogenesis.


Blood ◽  
2021 ◽  
Author(s):  
James A Poulter ◽  
Jason Charles Collins ◽  
Catherine Cargo ◽  
Ruth M de Tute ◽  
Paul Evans ◽  
...  

Somatic mutations at methionine 41 (Met41) in UBA1, encoding the major E1 enzyme responsible for initiating ubiquitylation, were recently identified as the cause of a novel autoinflammatory disease, named VEXAS (Vacuoles, E1 enzyme, X-linked, autoinflammatory, somatic). We sought to determine the prevalence of UBA1 mutations in a UK cohort of patients matching the VEXAS clinical phenotype. We identified 10 new patients with somatic mutations in UBA1, but only 8 had altered p.Met41. A novel variant, c.167C&gt;T; p.Ser56Phe was identified, which was present in myeloid, and not lymphoid lineages and led to preferential loss of the catalytic activity of cytoplasmic UBA1. An additional novel variant, c.118-1G&gt;C was identified at the splice acceptor site of exon 3 leading to altered splicing in vitro. Bone marrow biopsies from two patients with a Met41 substitution and the novel splice site variant were consistent with previously reported features of VEXAS. The bone marrow of the patient with the p.Ser56Phe variant was less similar, likely driven by a distinct but overlapping disease mechanism. Our study therefore confirms somatic p.Met41 substitutions in UBA1 as a major cause of VEXAS syndrome and identifies two new disease causing mutations.


Sign in / Sign up

Export Citation Format

Share Document