myeloid malignancies
Recently Published Documents


TOTAL DOCUMENTS

1039
(FIVE YEARS 272)

H-INDEX

62
(FIVE YEARS 9)

Author(s):  
Melanie Decker ◽  
Anupriya Agarwal ◽  
Andreas Benneche ◽  
Jane E. Churpek ◽  
Nicolas Duployez ◽  
...  

Familial platelet disorder with associated myeloid malignancies (RUNX1-FPD) is caused by heterozygous pathogenic germline variants of RUNX1. In the present study, we evaluate the applicability of transactivation assays to investigate RUNX1 variants in different regions of the protein. We studied 11 variants to independently validate transactivation assays supporting variant classification following the ClinGen Myeloid Malignancies variant curation expert panel guidelines. Variant classification is key for the translation of genetic findings. We showed that new assays need to be developed to assess C-terminal RUNX1 variants. Two variants of uncertain significance (VUS) were reclassified to likely pathogenic. Additionally, our analyses supported the (likely) pathogenic classification of two other variants. We demonstrated functionality of four VUS, but reclassification to (likely) benign was challenging and suggested the need to reevaluate current classification guidelines. Finally, clinical utility of our assays was illustrated in the context of seven families. Our data confirmed RUNX1-FPD suspicion in three families with RUNX1-FPD-specific family history. Whereas for three variants identified in non RUNX1-FPD-typical families, no functional defect was detected. Applying functional assays to support RUNX1 variant classification can be essential for adequate care of index patients and their relatives at risk. It facilitates translation of genetic data into personalized medicine.


Medicina ◽  
2022 ◽  
Vol 58 (1) ◽  
pp. 105
Author(s):  
Sławomir Milczarek ◽  
Ewa Studniak ◽  
Bartłomiej Baumert ◽  
Michał Janowski ◽  
Wioleta Bonda ◽  
...  

We present a unique case of a young woman with acute myeloid leukemia (AML) with complex karyotype. The presence of the t(4;11)(q23;p15) is extremely rare in myeloid leukemias, while t(4;8)(q32;q13) has not yet been described in any leukemia reference. Another interesting issue is the familial aggregation of myeloid malignancies and worse course of the disease in each subsequent generation, as well as an earlier onset of the disease. Our report emphasizes the need for thorough pedigree examination upon myeloid malignancy diagnosis as there are relatives for whom counseling, gene testing, and surveillance may be highly advisable.


2021 ◽  
Vol Publish Ahead of Print ◽  
Author(s):  
Matthew R.M. Jotte ◽  
Megan E. McNerney

Biomolecules ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1911
Author(s):  
Hans Felix Staehle ◽  
Heike Luise Pahl ◽  
Jonas Samuel Jutzi

Histone methylation tightly regulates chromatin accessibility, transcription, proliferation, and cell differentiation, and its perturbation contributes to oncogenic reprogramming of cells. In particular, many myeloid malignancies show evidence of epigenetic dysregulation. Jumonji C (JmjC) domain-containing proteins comprise a large and diverse group of histone demethylases (KDMs), which remove methyl groups from lysines in histone tails and other proteins. Cumulating evidence suggests an emerging role for these demethylases in myeloid malignancies, rendering them attractive targets for drug interventions. In this review, we summarize the known functions of Jumonji C (JmjC) domain-containing proteins in myeloid malignancies. We highlight challenges in understanding the context-dependent mechanisms of these proteins and explore potential future pharmacological targeting.


Hematology ◽  
2021 ◽  
Vol 2021 (1) ◽  
pp. 399-404
Author(s):  
Afaf E. W. G. Osman

Abstract Rapid advances in sequencing technology have led to the identification of somatic mutations that predispose a significant subset of the aging population to myeloid malignancies. Recently recognized myeloid precursor conditions include clonal hematopoiesis of indeterminate potential (CHIP) and clonal cytopenia of unknown significance (CCUS). These conditions can present diagnostic challenges and produce unwarranted anxiety in some instances. While the risk of progression to myeloid malignancies is very low in CHIP, true CCUS confers an exponential increase in risk. Idiopathic cytopenia of unknown significance (IDUS) lacks the predisposing genetic mutations and has a variable course. In this review we define the early myeloid precursor conditions and their risk of progression. We present our diagnostic approach to patients with unexplained cytopenias and discuss the clinical consequences of CHIP and CCUS.


Biomedicines ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 1844
Author(s):  
Carmelo Gurnari ◽  
Simona Pagliuca ◽  
Valeria Visconte

Alternative RNA splicing (AS) is an essential physiologic function that diversifies the human proteome. AS also has a crucial role during cellular development. In fact, perturbations in RNA-splicing have been implicated in the development of several cancers, including myeloid malignancies. Splicing dysfunction can be independent of genetic lesions or appear as a direct consequence of mutations in components of the RNA-splicing machinery, such as in the case of mutations occurring in splicing factor genes (i.e., SF3B1, SRSF2, U2AF1) and their regulators. In addition, cancer cells exhibit marked gene expression alterations, including different usage of AS isoforms, possibly causing tissue-specific effects and perturbations of downstream pathways. This review summarizes several modalities leading to splicing diversity in myeloid malignancies.


Experimed ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 184-188
Author(s):  
Sinem Fırtına ◽  
Özden Hatırnaz Ng ◽  
Yücel Erbilgin ◽  
İbrahim Haznedaroğlu ◽  
Müge Sayitoğlu

2021 ◽  
Vol 11 (12) ◽  
Author(s):  
Ryan J. Stubbins ◽  
Aly Karsan

AbstractBlocked cellular differentiation is a central pathologic feature of the myeloid malignancies, myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML). Treatment regimens promoting differentiation have resulted in incredible cure rates in certain AML subtypes, such as acute promyelocytic leukemia. Over the past several years, we have seen many new therapies for MDS/AML enter clinical practice, including epigenetic therapies (e.g., 5-azacitidine), isocitrate dehydrogenase (IDH) inhibitors, fms-like kinase 3 (FLT3) inhibitors, and lenalidomide for deletion 5q (del5q) MDS. Despite not being developed with the intent of manipulating differentiation, induction of differentiation is a major mechanism by which several of these novel agents function. In this review, we examine the new therapeutic landscape for these diseases, focusing on the role of hematopoietic differentiation and the impact of inflammation and aging. We review how current therapies in MDS/AML promote differentiation as a part of their therapeutic effect, and the cellular mechanisms by which this occurs. We then outline potential novel avenues to achieve differentiation in the myeloid malignancies for therapeutic purposes. This emerging body of knowledge about the importance of relieving differentiation blockade with anti-neoplastic therapies is important to understand how current novel agents function and may open avenues to developing new treatments that explicitly target cellular differentiation. Moving beyond cytotoxic agents has the potential to open new and unexpected avenues in the treatment of myeloid malignancies, hopefully providing more efficacy with reduced toxicity.


Sign in / Sign up

Export Citation Format

Share Document