On the Deficiency Indices of Third-Order Differential Operators

1988 ◽  
Vol 20 (4) ◽  
pp. 333-336 ◽  
Author(s):  
V. Krishna Kumar ◽  
A. Padmanabhan
2021 ◽  
Author(s):  
Zulqurnain Sabir ◽  
Hafiz Abdul Wahab

Abstract The presented research work articulates a new design of heuristic computing platform with artificial intelligence algorithm by exploitation of modeling with feed-forward Gudermannian neural networks (FFGNN) trained with global search viability of genetic algorithms (GA) hybrid with speedy local convergence ability of sequential quadratic programing (SQP) approach, i.e., FFGNN-GASQP for solving the singular nonlinear third order Emden-Fowler (SNEF) models. The proposed FFGNN-GASQP intelligent computing solver Gudermannian kernel unified in the hidden layer structure of FFGNN systems of differential operators based on the SNEF that are arbitrary connected to represent the error-based merit function. The optimization objective function is performed with hybrid heuristics of GASQP. Three problems of the third order SNEF are used to evaluate the correctness, robustness and effectiveness of the designed FFGNN-GASQP scheme. Statistical assessments of the performance of FFGNN-GASQP are used to validate the consistent accuracy, convergence and stability.


Author(s):  
Sergey I. Mitrokhin

In this paper we study the spectral properties of a third-order differential operator with a summable potential with a smooth weight function. The boundary conditions are separated. The method of studying differential operators with summable potential is a development of the method of studying operators with piecewise smooth coefficients. Boundary value problems of this kind arise in the study of vibrations of rods, beams and bridges composed of materials of different densities. The differential equation defining the differential operator is reduced to the solution of the Volterra integral equation by means of the method of variation of constants. The solution of the integral equation is found by the method of successive Picard approximations. Using the study of an integral equation, we obtained asymptotic formulas and estimates for the solutions of a differential equation defining a differential operator. For large values of the spectral parameter, the asymptotics of solutions of the differential equation that defines the differential operator is derived. Asymptotic estimates of solutions of a differential equation are obtained in the same way as asymptotic estimates of solutions of a differential operator with smooth coefficients. The study of boundary conditions leads to the study of the roots of the function, presented in the form of a third-order determinant. To get the roots of this function, the indicator diagram wasstudied. The roots of this equation are in three sectors of an infinitely small size, given by the indicator diagram. The article studies the behavior of the roots of this equation in each of the sectors of the indicator diagram. The asymptotics of the eigenvalues of the differential operator under study is calculated. The formulas found for the asymptotics of eigenvalues allow us to study the spectral properties of the eigenfunctions of the differential operator under study.


2013 ◽  
Vol 21 (2) ◽  
pp. 237-252 ◽  
Author(s):  
Hüseyin Tuna

Abstract In this paper, maximal dissipative fourth order operators with equal deficiency indices are investigated. We construct a self adjoint dilation of such operators. We also construct a functional model of the maximal dissipative operator which based on the method of Pavlov and define its characteristic function. We prove theorems on the completeness of the system of eigenvalues and eigenvectors of the maximal dissipative fourth order operators.


2014 ◽  
Vol 2014 ◽  
pp. 1-6
Author(s):  
Nemat Dalir

The modified decomposition method (MDM) is improved by introducing new inverse differential operators to adapt the MDM for handling third-order singular nonlinear partial differential equations (PDEs) arising in physics and mechanics. A few case-study singular nonlinear initial-value problems (IVPs) of third-order PDEs are presented and solved by the improved modified decomposition method (IMDM). The solutions are compared with the existing exact analytical solutions. The comparisons show that the IMDM is effectively capable of obtaining the exact solutions of the third-order singular nonlinear IVPs.


Sign in / Sign up

Export Citation Format

Share Document