scholarly journals A description of amalgamated free products of finite von Neumann algebras over finite-dimensional subalgebras

2010 ◽  
Vol 43 (1) ◽  
pp. 63-74 ◽  
Author(s):  
Ken Dykema
2014 ◽  
Vol 25 (03) ◽  
pp. 1450026
Author(s):  
Sören Möller

Let ℳi be a family of II1-factors, containing a common II1-subfactor 𝒩, such that [ℳi : 𝒩] ∈ ℕ0 for all i. Furthermore, let ϕ: ℕ0 → ℂ. We show that if a Hankel matrix related to ϕ is trace-class, then there exists a unique completely bounded map Mϕ on the amalgamated free product of the ℳi with amalgamation over 𝒩, which acts as a radial multiplier. Hereby, we extend a result of Haagerup and the author for radial multipliers on reduced free products of unital C*- and von Neumann algebras.


2000 ◽  
Vol 52 (4) ◽  
pp. 695-736 ◽  
Author(s):  
A. Carey ◽  
M. Farber ◽  
V. Mathai

AbstractGiven a holomorphic Hilbertian bundle on a compact complex manifold, we introduce the notion of holomorphic L2 torsion, which lies in the determinant line of the twisted L2 Dolbeault cohomology and represents a volume element there. Here we utilise the theory of determinant lines of Hilbertian modules over finite von Neumann algebras as developed in [CFM]. This specialises to the Ray-Singer-Quillen holomorphic torsion in the finite dimensional case. We compute ametric variation formula for the holomorphic L2 torsion, which shows that it is not in general independent of the choice of Hermitian metrics on the complex manifold and on the holomorphic Hilbertian bundle, which are needed to define it. We therefore initiate the theory of correspondences of determinant lines, that enables us to define a relative holomorphic L2 torsion for a pair of flat Hilbertian bundles, which we prove is independent of the choice of Hermitian metrics on the complex manifold and on the flat Hilbertian bundles.


2021 ◽  
pp. 1-54 ◽  
Author(s):  
Michael Brannan ◽  
Li Gao ◽  
Marius Junge

We study the “geometric Ricci curvature lower bound”, introduced previously by Junge, Li and LaRacuente, for a variety of examples including group von Neumann algebras, free orthogonal quantum groups [Formula: see text], [Formula: see text]-deformed Gaussian algebras and quantum tori. In particular, we show that Laplace operator on [Formula: see text] admits a factorization through the Laplace–Beltrami operator on the classical orthogonal group, which establishes the first connection between these two operators. Based on a non-negative curvature condition, we obtain the completely bounded version of the modified log-Sobolev inequalities for the corresponding quantum Markov semigroups on the examples mentioned above. We also prove that the “geometric Ricci curvature lower bound” is stable under tensor products and amalgamated free products. As an application, we obtain a sharp Ricci curvature lower bound for word-length semigroups on free group factors.


Author(s):  
Ivan Bardet ◽  
Ángela Capel ◽  
Cambyse Rouzé

AbstractIn this paper, we derive a new generalisation of the strong subadditivity of the entropy to the setting of general conditional expectations onto arbitrary finite-dimensional von Neumann algebras. This generalisation, referred to as approximate tensorization of the relative entropy, consists in a lower bound for the sum of relative entropies between a given density and its respective projections onto two intersecting von Neumann algebras in terms of the relative entropy between the same density and its projection onto an algebra in the intersection, up to multiplicative and additive constants. In particular, our inequality reduces to the so-called quasi-factorization of the entropy for commuting algebras, which is a key step in modern proofs of the logarithmic Sobolev inequality for classical lattice spin systems. We also provide estimates on the constants in terms of conditions of clustering of correlations in the setting of quantum lattice spin systems. Along the way, we show the equivalence between conditional expectations arising from Petz recovery maps and those of general Davies semigroups.


Author(s):  
Klaus Thomsen

SynopsisWe consider automorphic actions on von Neumann algebras of a locally compact group E given as a topological extension 0 → A → E → G → 0, where A is compact abelian and second countable. Motivated by the wish to describe and classify ergodic actions of E when G is finite, we classify (up to conjugacy) first the ergodic actions of locally compact groups on finite-dimensional factors and then compact abelian actions with the property that the fixed-point algebra is of type I with atomic centre. We then handle the case of ergodic actions of E with the property that the action is already ergodic when restricted to A, and then, as a generalisation, the case of (not necessarily ergodic) actions of E with the property that the restriction to A is an action with abelian atomic fixed-point algebra. Both these cases are handled for general locally compact-countable G. Finally, we combine the obtained results to classify the ergodic actions of E when G is finite, provided that either the extension is central and Hom (G, T) = 0, or G is abelian and either cyclic or of an order not divisible by a square.


Sign in / Sign up

Export Citation Format

Share Document