scholarly journals The Zariski cancellation problem for Poisson algebras

2020 ◽  
Vol 101 (3) ◽  
pp. 1250-1279
Author(s):  
Jason Gaddis ◽  
Xingting Wang
2017 ◽  
Vol 19 (7) ◽  
pp. 2019-2049 ◽  
Author(s):  
Jason Bell ◽  
Stéphane Launois ◽  
Omar León Sánchez ◽  
Rahim Moosa

2019 ◽  
Vol 136 ◽  
pp. 156-172 ◽  
Author(s):  
Joakim Arnlind ◽  
Ahmed Al-Shujary
Keyword(s):  

2018 ◽  
Vol 15 (11) ◽  
pp. 1850190 ◽  
Author(s):  
Viktor Abramov

We propose an extension of [Formula: see text]-ary Nambu–Poisson bracket to superspace [Formula: see text] and construct by means of superdeterminant a family of Nambu–Poisson algebras of even degree functions, where the parameter of this family is an invertible transformation of Grassmann coordinates in superspace [Formula: see text]. We prove in the case of the superspaces [Formula: see text] and [Formula: see text] that our [Formula: see text]-ary bracket, defined with the help of superdeterminant, satisfies the conditions for [Formula: see text]-ary Nambu–Poisson bracket, i.e. it is totally skew-symmetric and it satisfies the Leibniz rule and the Filippov–Jacobi identity (fundamental identity). We study the structure of [Formula: see text]-ary bracket defined with the help of superdeterminant in the case of superspace [Formula: see text] and show that it is the sum of usual [Formula: see text]-ary Nambu–Poisson bracket and a new [Formula: see text]-ary bracket, which we call [Formula: see text]-bracket, where [Formula: see text] is the product of two odd degree smooth functions.


2020 ◽  
Author(s):  
Ahmed Al-Shujary
Keyword(s):  

10.37236/6676 ◽  
2017 ◽  
Vol 24 (2) ◽  
Author(s):  
Richard H. Hammack ◽  
Cristina Mullican

We connect two seemingly unrelated problems in graph theory.Any graph $G$ has a neighborhood multiset $\mathscr{N}(G)= \{N(x) \mid x\in V(G)\}$ whose elements are precisely the open vertex-neighborhoods of $G$. In general there exist non-isomorphic graphs $G$ and $H$ for which $\mathscr{N}(G)=\mathscr{N}(H)$. The neighborhood reconstruction problem asks the conditions under which $G$ is uniquely reconstructible from its neighborhood multiset, that is, the conditions under which $\mathscr{N}(G)=\mathscr{N}(H)$ implies $G\cong H$. Such a graph is said to be neighborhood-reconstructible.The cancellation problem for the direct product of graphs seeks the conditions under which $G\times K\cong H\times K$ implies $G\cong H$. Lovász proved that this is indeed the case if $K$ is not bipartite. A second instance of the cancellation problem asks for conditions on $G$ that assure $G\times K\cong H\times K$ implies $G\cong H$ for any bipartite~$K$ with $E(K)\neq \emptyset$. A graph $G$ for which this is true is called a cancellation graph.We prove that the neighborhood-reconstructible graphs are precisely the cancellation graphs. We also present some new results on cancellation graphs, which have corresponding implications for neighborhood reconstruction. We are particularly interested in the (yet-unsolved) problem of finding a simple structural characterization of cancellation graphs (equivalently, neighborhood-reconstructible graphs).


Sign in / Sign up

Export Citation Format

Share Document