scholarly journals On lower bounds for the Ihara constants  and 

2013 ◽  
Vol 149 (7) ◽  
pp. 1108-1128
Author(s):  
Iwan Duursma ◽  
Kit-Ho Mak

AbstractLet $ \mathcal{X} $ be a curve over ${ \mathbb{F} }_{q} $ and let $N( \mathcal{X} )$, $g( \mathcal{X} )$ be its number of rational points and genus respectively. The Ihara constant $A(q)$ is defined by $A(q)= {\mathrm{lim~sup} }_{g( \mathcal{X} )\rightarrow \infty } N( \mathcal{X} )/ g( \mathcal{X} )$. In this paper, we employ a variant of Serre’s class field tower method to obtain an improvement of the best known lower bounds on $A(2)$ and $A(3)$.

2002 ◽  
Vol 45 (1) ◽  
pp. 86-88 ◽  
Author(s):  
Frank Gerth

AbstractLet k be a cyclic extension of odd prime degree p of the field of rational numbers. If t denotes the number of primes that ramify in k, it is known that the Hilbert p-class field tower of k is infinite if t > 3 + 2 . For each t > 2 + , this paper shows that a positive proportion of such fields k have infinite Hilbert p-class field towers.


2020 ◽  
Vol 63 (4) ◽  
pp. 921-936 ◽  
Author(s):  
Debanjana Kundu

AbstractIn this paper, we study the growth of fine Selmer groups in two cases. First, we study the growth of fine Selmer ranks in multiple $\mathbb{Z}_{p}$-extensions. We show that the growth of the fine Selmer group is unbounded in such towers. We recover a sufficient condition to prove the $\unicode[STIX]{x1D707}=0$ conjecture for cyclotomic $\mathbb{Z}_{p}$-extensions. We show that in certain non-cyclotomic $\mathbb{Z}_{p}$-towers, the $\unicode[STIX]{x1D707}$-invariant of the fine Selmer group can be arbitrarily large. Second, we show that in an unramified $p$-class field tower, the growth of the fine Selmer group is unbounded. This tower is non-Abelian and non-$p$-adic analytic.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Abdelmalek Azizi ◽  
Mohamed Talbi ◽  
Mohammed Talbi

We determine the Hilbert 2-class field tower for some quartic number fields k whose 2-class group Ck,2 is isomorphic to ℤ/2ℤ×ℤ/2ℤ.


2018 ◽  
Vol 237 ◽  
pp. 166-187
Author(s):  
SOSUKE SASAKI

Let $k$ be an imaginary quadratic field with $\operatorname{Cl}_{2}(k)\simeq V_{4}$. It is known that the length of the Hilbert $2$-class field tower is at least $2$. Gerth (On 2-class field towers for quadratic number fields with$2$-class group of type$(2,2)$, Glasgow Math. J. 40(1) (1998), 63–69) calculated the density of $k$ where the length of the tower is $1$; that is, the maximal unramified $2$-extension is a $V_{4}$-extension. In this paper, we shall extend this result for generalized quaternion, dihedral, and semidihedral extensions of small degrees.


2014 ◽  
Vol 17 (A) ◽  
pp. 404-417 ◽  
Author(s):  
John C. Miller

AbstractUntil recently, the ‘plus part’ of the class numbers of cyclotomic fields had only been determined for fields of root discriminant small enough to be treated by Odlyzko’s discriminant bounds.However, by finding lower bounds for sums over prime ideals of the Hilbert class field, we can now establish upper bounds for class numbers of fields of larger discriminant. This new analytic upper bound, together with algebraic arguments concerning the divisibility properties of class numbers, allows us to unconditionally determine the class numbers of many cyclotomic fields that had previously been untreatable by any known method.In this paper, we study in particular the cyclotomic fields of composite conductor.


Sign in / Sign up

Export Citation Format

Share Document