scholarly journals Endoscopie et conjecture locale raffinée de Gan–Gross–Prasad pour les groupes unitaires

2015 ◽  
Vol 151 (7) ◽  
pp. 1309-1371 ◽  
Author(s):  
R. Beuzart-Plessis

Under endoscopic assumptions about $L$-packets of unitary groups, we prove the local Gan–Gross–Prasad conjecture for tempered representations of unitary groups over $p$-adic fields. Roughly, this conjecture says that branching laws for $U(n-1)\subset U(n)$ can be computed using epsilon factors.

2018 ◽  
Vol 2020 (13) ◽  
pp. 3902-3926
Author(s):  
Réda Boumasmoud ◽  
Ernest Hunter Brooks ◽  
Dimitar P Jetchev

Abstract We consider cycles on three-dimensional Shimura varieties attached to unitary groups, defined over extensions of a complex multiplication (CM) field $E$, which appear in the context of the conjectures of Gan et al. [6]. We establish a vertical distribution relation for these cycles over an anticyclotomic extension of $E$, complementing the horizontal distribution relation of [8], and use this to define a family of norm-compatible cycles over these fields, thus obtaining a universal norm construction similar to the Heegner $\Lambda $-module constructed from Heegner points.


Author(s):  
Saul D. Freedman

AbstractLet G be a non-abelian finite simple group. In addition, let $$\Delta _G$$ Δ G be the intersection graph of G, whose vertices are the proper non-trivial subgroups of G, with distinct subgroups joined by an edge if and only if they intersect non-trivially. We prove that the diameter of $$\Delta _G$$ Δ G has a tight upper bound of 5, thereby resolving a question posed by Shen (Czechoslov Math J 60(4):945–950, 2010). Furthermore, a diameter of 5 is achieved only by the baby monster group and certain unitary groups of odd prime dimension.


1977 ◽  
Vol 18 (11) ◽  
pp. 2166-2171 ◽  
Author(s):  
K. Kraus ◽  
L. Polley ◽  
G. Reents

1980 ◽  
Vol 63 (2) ◽  
pp. 514-540 ◽  
Author(s):  
D.G James ◽  
B Weisfeiler
Keyword(s):  

2006 ◽  
Vol 13 (04) ◽  
pp. 415-426 ◽  
Author(s):  
P. Aniello ◽  
C. Lupo ◽  
M. Napolitano

In this paper, we investigate some mathematical structures underlying the physics of linear optical passive (LOP) devices. We show, in particular, that with the class of LOP transformations on N optical modes one can associate a unitary representation of U (N) in the N-mode Fock space, representation which can be decomposed into irreducible sub-representations living in the subspaces characterized by a fixed number of photons. These (sub-)representations can be classified using the theory of representations of semi-simple Lie algebras. The remarkable case where N = 3 is studied in detail.


Sign in / Sign up

Export Citation Format

Share Document