The intersection graph of a finite simple group has diameter at most 5
AbstractLet G be a non-abelian finite simple group. In addition, let $$\Delta _G$$ Δ G be the intersection graph of G, whose vertices are the proper non-trivial subgroups of G, with distinct subgroups joined by an edge if and only if they intersect non-trivially. We prove that the diameter of $$\Delta _G$$ Δ G has a tight upper bound of 5, thereby resolving a question posed by Shen (Czechoslov Math J 60(4):945–950, 2010). Furthermore, a diameter of 5 is achieved only by the baby monster group and certain unitary groups of odd prime dimension.