scholarly journals The intersection graph of a finite simple group has diameter at most 5

Author(s):  
Saul D. Freedman

AbstractLet G be a non-abelian finite simple group. In addition, let $$\Delta _G$$ Δ G be the intersection graph of G, whose vertices are the proper non-trivial subgroups of G, with distinct subgroups joined by an edge if and only if they intersect non-trivially. We prove that the diameter of $$\Delta _G$$ Δ G has a tight upper bound of 5, thereby resolving a question posed by Shen (Czechoslov Math J 60(4):945–950, 2010). Furthermore, a diameter of 5 is achieved only by the baby monster group and certain unitary groups of odd prime dimension.

2016 ◽  
Vol 4 ◽  
Author(s):  
NICK GILL

Let $G$ be a finite group acting transitively on a set $\unicode[STIX]{x1D6FA}$. We study what it means for this action to be quasirandom, thereby generalizing Gowers’ study of quasirandomness in groups. We connect this notion of quasirandomness to an upper bound for the convolution of functions associated with the action of $G$ on $\unicode[STIX]{x1D6FA}$. This convolution bound allows us to give sufficient conditions such that sets $S\subseteq G$ and $\unicode[STIX]{x1D6E5}_{1},\unicode[STIX]{x1D6E5}_{2}\subseteq \unicode[STIX]{x1D6FA}$ contain elements $s\in S,\unicode[STIX]{x1D714}_{1}\in \unicode[STIX]{x1D6E5}_{1},\unicode[STIX]{x1D714}_{2}\in \unicode[STIX]{x1D6E5}_{2}$ such that $s(\unicode[STIX]{x1D714}_{1})=\unicode[STIX]{x1D714}_{2}$. Other consequences include an analogue of ‘the Gowers trick’ of Nikolov and Pyber for general group actions, a sum-product type theorem for large subsets of a finite field, as well as applications to expanders and to the study of the diameter and width of a finite simple group.


2021 ◽  
Vol 28 (04) ◽  
pp. 561-568
Author(s):  
Jinke Hai ◽  
Lele Zhao

Let [Formula: see text] be an extension of a finite characteristically simple group by an abelian group or a finite simple group. It is shown that every Coleman automorphism of [Formula: see text] is an inner automorphism. Interest in such automorphisms arises from the study of the normalizer problem for integral group rings.


Author(s):  
Zhenfeng Wu

Denote by [Formula: see text] the number of Sylow [Formula: see text]-subgroups of [Formula: see text]. For every subgroup [Formula: see text] of [Formula: see text], it is easy to see that [Formula: see text], but [Formula: see text] does not divide [Formula: see text] in general. Following [W. Guo and E. P. Vdovin, Number of Sylow subgroups in finite groups, J. Group Theory 21(4) (2018) 695–712], we say that a group [Formula: see text] satisfies DivSyl(p) if [Formula: see text] divides [Formula: see text] for every subgroup [Formula: see text] of [Formula: see text]. In this paper, we show that “almost for every” finite simple group [Formula: see text], there exists a prime [Formula: see text] such that [Formula: see text] does not satisfy DivSyl(p).


2020 ◽  
Vol 23 (3) ◽  
pp. 447-470
Author(s):  
Nanying Yang ◽  
Mariya A. Grechkoseeva ◽  
Andrey V. Vasil’ev

AbstractWe refer to the set of the orders of elements of a finite group as its spectrum and say that groups are isospectral if their spectra coincide. We prove that, except for one specific case, the solvable radical of a nonsolvable finite group isospectral to a finite simple group is nilpotent.


2018 ◽  
Vol 99 (2) ◽  
pp. 203-211
Author(s):  
S. P. GLASBY ◽  
ALICE C. NIEMEYER ◽  
TOMASZ POPIEL

Let $T$ be a finite simple group of Lie type in characteristic $p$, and let $S$ be a Sylow subgroup of $T$ with maximal order. It is well known that $S$ is a Sylow $p$-subgroup except for an explicit list of exceptions and that $S$ is always ‘large’ in the sense that $|T|^{1/3}<|S|\leq |T|^{1/2}$. One might anticipate that, moreover, the Sylow $r$-subgroups of $T$ with $r\neq p$ are usually significantly smaller than $S$. We verify this hypothesis by proving that, for every $T$ and every prime divisor $r$ of $|T|$ with $r\neq p$, the order of the Sylow $r$-subgroup of $T$ is at most $|T|^{2\lfloor \log _{r}(4(\ell +1)r)\rfloor /\ell }=|T|^{O(\log _{r}(\ell )/\ell )}$, where $\ell$ is the Lie rank of $T$.


2020 ◽  
Vol 171 ◽  
pp. 105175 ◽  
Author(s):  
Timothy C. Burness ◽  
Martino Garonzi ◽  
Andrea Lucchini

2016 ◽  
Vol 26 (4) ◽  
pp. 628-640 ◽  
Author(s):  
ANER SHALEV

We study the distribution of products of conjugacy classes in finite simple groups, obtaining effective two-step mixing results, which give rise to an approximation to a conjecture of Thompson.Our results, combined with work of Gowers and Viola, also lead to the solution of recent conjectures they posed on interleaved products and related complexity lower bounds, extending their work on the groups SL(2,q) to all (non-abelian) finite simple groups.In particular it follows that, ifGis a finite simple group, andA,B⊆Gtfort⩾ 2 are subsets of fixed positive densities, then, asa= (a1, . . .,at) ∈Aandb= (b1, . . .,bt) ∈Bare chosen uniformly, the interleaved producta•b:=a1b1. . .atbtis almost uniform onG(with quantitative estimates) with respect to the ℓ∞-norm.It also follows that the communication complexity of an old decision problem related to interleaved products ofa,b∈Gtis at least Ω(tlog |G|) whenGis a finite simple group of Lie type of bounded rank, and at least Ω(tlog log |G|) whenGis any finite simple group. Both these bounds are best possible.


Sign in / Sign up

Export Citation Format

Share Document