THE MODULUS OF THE IMAGE ANNULI UNDER UNIVALENT HARMONIC MAPPINGS AND A CONJECTURE OF NITSCHE

2001 ◽  
Vol 64 (2) ◽  
pp. 369-384 ◽  
Author(s):  
ABDALLAH LYZZAIK

The object of the paper is to show that if f is a univalent, harmonic mapping of the annulus A(r, 1) = {z : r < [mid ]z[mid ] < 1} onto the annulus A(R, 1), and if s is the length of the segment of the Grötzsch ring domain associated with A(r, 1), then R < s. This gives the first, quantitative upper bound of R, which relates to a question of J. C. C. Nitsche that he raised in 1962. The question of whether this bound is sharp remains open.

Author(s):  
Deepali Khurana ◽  
Raj Kumar ◽  
Sibel Yalcin

We define two new subclasses, $HS(k, \lambda, b, \alpha)$ and \linebreak $\overline{HS}(k, \lambda, b, \alpha)$, of univalent harmonic mappings using multiplier transformation. We obtain a sufficient condition for harmonic univalent functions to be in $HS(k,\lambda,b,\alpha)$ and we prove that this condition is also necessary for the functions in the class $\overline{HS} (k,\lambda,b,\alpha)$. We also obtain extreme points, distortion bounds, convex combination, radius of convexity and Bernandi-Libera-Livingston integral for the functions in the class $\overline{HS}(k,\lambda,b,\alpha)$.


Author(s):  
Deepali Khurana ◽  
Sushma Gupta ◽  
Sukhjit Singh

In the present article, we consider a class of univalent harmonic mappings, $\mathcal{C}_{T} = \left\{ T_{c}[f] =\frac{f+czf'}{1+c}+\overline{\frac{f-czf'}{1+c}}; \; c>0\;\right\}$ and $f$ is convex univalent in $\mathbb{D}$, whose functions map the open unit disk $\mathbb{D}$ onto a domain convex in the direction of the imaginary axis. We estimate coefficient, growth and distortion bounds for the functions of the same class.


2019 ◽  
Vol 30 (1) ◽  
pp. 201-213 ◽  
Author(s):  
Stavros Evdoridis ◽  
Saminathan Ponnusamy ◽  
Antti Rasila

2021 ◽  
Vol 127 (3) ◽  
Author(s):  
Jiaolong Chen ◽  
David Kalaj

Assume that $p\in [1,\infty ]$ and $u=P_{h}[\phi ]$, where $\phi \in L^{p}(\mathbb{S}^{n-1},\mathbb{R}^n)$ and $u(0) = 0$. Then we obtain the sharp inequality $\lvert u(x) \rvert \le G_p(\lvert x \rvert )\lVert \phi \rVert_{L^{p}}$ for some smooth function $G_p$ vanishing at $0$. Moreover, we obtain an explicit form of the sharp constant $C_p$ in the inequality $\lVert Du(0)\rVert \le C_p\lVert \phi \rVert \le C_p\lVert \phi \rVert_{L^{p}}$. These two results generalize and extend some known results from the harmonic mapping theory (D. Kalaj, Complex Anal. Oper. Theory 12 (2018), 545–554, Theorem 2.1) and the hyperbolic harmonic theory (B. Burgeth, Manuscripta Math. 77 (1992), 283–291, Theorem 1).


2017 ◽  
Vol 186 (3) ◽  
pp. 453-470 ◽  
Author(s):  
Saminathan Ponnusamy ◽  
Anbareeswaran Sairam Kaliraj ◽  
Victor V. Starkov

2011 ◽  
Vol 2011 ◽  
pp. 1-7
Author(s):  
Z. Abdulhadi ◽  
Y. Abu Muhanna

We use star functions to determine the integral means for starlike log-harmonic mappings. Moreover, we include the upper bound for the arc length of starlike log-harmonic mappings.


2013 ◽  
Vol 44 (3) ◽  
pp. 313-325 ◽  
Author(s):  
Saurabh Porwal ◽  
Kaushal Kishore Dixit

The purpose of the present paper is to introduce two new classes $HS_p(\alpha)$ and $HC_p(\alpha)$ of $p$-harmonic mappings together with their corresponding subclasses $HS^0_p(\alpha)$ and $HC^0_p(\alpha)$. We prove that the mappings in $HS_p(\alpha)$ and $HC_p(\alpha)$ are univalent and sense-preserving in $U$ and obtain extreme points of $HS^0_p(\alpha)$ and $HC^0_p(\alpha)$, $HS_p(\alpha)\cap T_p$ and $HC_p(\alpha)\cap T_p$ are determined, where $T_p$ denotes the set of $p$-harmonic mapping with non negative coefficients. Finally, we establish the existence of the neighborhoods of mappings in $HC_p(\alpha)$. Relevant connections of the results presented here with various known results are briefly indicated.


Sign in / Sign up

Export Citation Format

Share Document