scholarly journals A Schwarz lemma for hyperbolic harmonic mappings in the unit ball

2021 ◽  
Vol 127 (3) ◽  
Author(s):  
Jiaolong Chen ◽  
David Kalaj

Assume that $p\in [1,\infty ]$ and $u=P_{h}[\phi ]$, where $\phi \in L^{p}(\mathbb{S}^{n-1},\mathbb{R}^n)$ and $u(0) = 0$. Then we obtain the sharp inequality $\lvert u(x) \rvert \le G_p(\lvert x \rvert )\lVert \phi \rVert_{L^{p}}$ for some smooth function $G_p$ vanishing at $0$. Moreover, we obtain an explicit form of the sharp constant $C_p$ in the inequality $\lVert Du(0)\rVert \le C_p\lVert \phi \rVert \le C_p\lVert \phi \rVert_{L^{p}}$. These two results generalize and extend some known results from the harmonic mapping theory (D. Kalaj, Complex Anal. Oper. Theory 12 (2018), 545–554, Theorem 2.1) and the hyperbolic harmonic theory (B. Burgeth, Manuscripta Math. 77 (1992), 283–291, Theorem 1).

Filomat ◽  
2018 ◽  
Vol 32 (15) ◽  
pp. 5371-5383
Author(s):  
Qingtian Shi ◽  
Yi Qi

A sufficient condition of a flat harmonic quasiconformal mapping to be a quasihyperbolic quasiisometry on any subdomain of C is given in this paper, which generalizes the corresponding results of Euclidean and 1/|?|2 harmonic mappings. As an application, Schwarz lemma of flat harmonic mapping is also investigated. Besides, properties and constructions of flat harmonic mapping are obtained at the same time.


2017 ◽  
Vol 60 (1) ◽  
pp. 219-224 ◽  
Author(s):  
DAVID KALAJ

AbstractIn this note, we establish a Schwarz–Pick type inequality for holomorphic mappings between unit balls Bn and Bm in corresponding complex spaces. We also prove a Schwarz-Pick type inequality for pluri-harmonic functions.


2013 ◽  
Vol 44 (3) ◽  
pp. 313-325 ◽  
Author(s):  
Saurabh Porwal ◽  
Kaushal Kishore Dixit

The purpose of the present paper is to introduce two new classes $HS_p(\alpha)$ and $HC_p(\alpha)$ of $p$-harmonic mappings together with their corresponding subclasses $HS^0_p(\alpha)$ and $HC^0_p(\alpha)$. We prove that the mappings in $HS_p(\alpha)$ and $HC_p(\alpha)$ are univalent and sense-preserving in $U$ and obtain extreme points of $HS^0_p(\alpha)$ and $HC^0_p(\alpha)$, $HS_p(\alpha)\cap T_p$ and $HC_p(\alpha)\cap T_p$ are determined, where $T_p$ denotes the set of $p$-harmonic mapping with non negative coefficients. Finally, we establish the existence of the neighborhoods of mappings in $HC_p(\alpha)$. Relevant connections of the results presented here with various known results are briefly indicated.


Symmetry ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1781
Author(s):  
Batirkhan Turmetov ◽  
Valery Karachik

We study the eigenfunctions and eigenvalues of the boundary value problem for the nonlocal Laplace equation with multiple involution. An explicit form of the eigenfunctions and eigenvalues for the unit ball are obtained. A theorem on the completeness of the eigenfunctions of the problem under consideration is proved.


2001 ◽  
Vol 64 (2) ◽  
pp. 369-384 ◽  
Author(s):  
ABDALLAH LYZZAIK

The object of the paper is to show that if f is a univalent, harmonic mapping of the annulus A(r, 1) = {z : r < [mid ]z[mid ] < 1} onto the annulus A(R, 1), and if s is the length of the segment of the Grötzsch ring domain associated with A(r, 1), then R < s. This gives the first, quantitative upper bound of R, which relates to a question of J. C. C. Nitsche that he raised in 1962. The question of whether this bound is sharp remains open.


2014 ◽  
Vol 25 (3) ◽  
pp. 1890-1914 ◽  
Author(s):  
Taishun Liu ◽  
Jianfei Wang ◽  
Xiaomin Tang
Keyword(s):  

Author(s):  
Makhmud A. Sadybekov ◽  
Batirkhan K. Turmetov ◽  
Berikbol T. Torebek

AbstractThe paper is devoted to investigation questions about constructing the explicit form of the Green's function of the Robin problem in the unit ball of ℝ


2009 ◽  
Vol 2009 ◽  
pp. 1-14
Author(s):  
Sh. Chen ◽  
S. Ponnusamy ◽  
X. Wang

We first obtain the relations of local univalency, convexity, and linear connectedness between analytic functions and their corresponding affine harmonic mappings. In addition, the paper deals with the regions of variability of values of affine harmonic and biharmonic mappings. The regions (their boundaries) are determined explicitly and the proofs rely on Schwarz lemma or subordination.


Sign in / Sign up

Export Citation Format

Share Document