scholarly journals Riemannian Means as Solutions of Variational Problems

2006 ◽  
Vol 9 ◽  
pp. 86-103 ◽  
Author(s):  
Luís Machado ◽  
F. Silva Leite ◽  
Knut Hüper

We formulate a variational problem on a Riemannian manifoldMwhose solutions are piecewise smooth geodesies that best fit a given data set of time labelled points inM. By a limiting process, these solutions converge to a single point inM. which we prove to be the Riemannian mean of the given points for some particular Riemannian manifolds such as Euclidean spaces, connected and compact Lie groups, and spheres.

Author(s):  
Frank C. Park ◽  
Bahram Ravani

Abstract In this article we generalize the concept of Bézier curves to curved spaces, and illustrate this generalization with an application in kinematics. We show how De Casteljau’s algorithm for constructing Bézier curves can be extended in a natural way to Riemannian manifolds. We then consider a special class of Riemannian manifold, the Lie groups. Because of their algebraic group structure Lie groups admit an elegant, efficient recursive algorithm for constructing Bézier curves. Spatial displacements of a rigid body also form a Lie group, and can therefore be interpolated (in the Bezier sense) using this recursive algorithm. We apply this algorithm to the kinematic problem of trajectory generation or motion interpolation for a moving rigid body.


2007 ◽  
Vol 83 (1) ◽  
pp. 105-124 ◽  
Author(s):  
Tomasz Popiel ◽  
Lyle Noakes

AbstractIn a Riemannian manifold M, elastica are solutions of the Euler-Lagrange equation of the following second order constrained variational problem: find a unit-speed curve in M, interpolating two given points with given initial and final (unit) velocities, of minimal average squared geodesic curvature. We study elastica in Lie groups G equipped with bi-invariant Riemannian metrics, focusing, with a view to applications in engineering and computer graphics, on the group SO(3) of rotations of Euclidean 3-space. For compact G, we show that elastica extend to the whole real line. For G = SO(3), we solve the Euler-Lagrange equation by quadratures.


1995 ◽  
Vol 117 (1) ◽  
pp. 36-40 ◽  
Author(s):  
F. C. Park ◽  
B. Ravani

In this article we generalize the concept of Be´zier curves to curved spaces, and illustrate this generalization with an application in kinematics. We show how De Casteljau’s algorithm for constructing Be´zier curves can be extended in a natural way to Riemannian manifolds. We then consider a special class of Riemannian manifold, the Lie groups. Because of their group structure Lie groups admit an elegant, efficient recursive algorithm for constructing Be´zier curves. Spatial displacements of a rigid body also form a Lie group, and can therefore be interpolated (in the Be´zier sense) using this recursive algorithm. We apply this alogorithm to the kinematic problem of trajectory generation or motion interpolation for a moving rigid body. The orientation trajectory of motions generated in this way have the important property of being invariant with respect to choices of inertial and body-fixed reference frames.


2018 ◽  
Author(s):  
Peter De Wolf ◽  
Zhuangqun Huang ◽  
Bede Pittenger

Abstract Methods are available to measure conductivity, charge, surface potential, carrier density, piezo-electric and other electrical properties with nanometer scale resolution. One of these methods, scanning microwave impedance microscopy (sMIM), has gained interest due to its capability to measure the full impedance (capacitance and resistive part) with high sensitivity and high spatial resolution. This paper introduces a novel data-cube approach that combines sMIM imaging and sMIM point spectroscopy, producing an integrated and complete 3D data set. This approach replaces the subjective approach of guessing locations of interest (for single point spectroscopy) with a big data approach resulting in higher dimensional data that can be sliced along any axis or plane and is conducive to principal component analysis or other machine learning approaches to data reduction. The data-cube approach is also applicable to other AFM-based electrical characterization modes.


2019 ◽  
Vol 16 (4) ◽  
pp. 557-566
Author(s):  
Denis Ilyutko ◽  
Evgenii Sevost'yanov

We study homeomorphisms of Riemannian manifolds with unbounded characteristic such that the inverse mappings satisfy the Poletsky-type inequality. It is established that their families are equicontinuous if the function Q which is related to the Poletsky inequality and is responsible for a distortion of the modulus, is integrable in the given domain, here the original manifold is connected and the domain of definition and the range of values of mappings have compact closures.


Sign in / Sign up

Export Citation Format

Share Document