scholarly journals Points of low height on elliptic surfaces with torsion

2010 ◽  
Vol 13 ◽  
pp. 370-387
Author(s):  
Sonal Jain

AbstractWe determine the smallest possible canonical height$\hat {h}(P)$for a non-torsion pointPof an elliptic curveEover a function field(t) of discriminant degree 12nwith a 2-torsion point forn=1,2,3, and with a 3-torsion point forn=1,2. For eachm=2,3, we parametrize the set of triples (E,P,T) of an elliptic curveE/with a rational pointPandm-torsion pointTthat satisfy certain integrality conditions by an open subset of2. We recover explicit equations for all elliptic surfaces (E,P,T) attaining each minimum by locating them as curves in our projective models. We also prove that forn=1,2 , these heights are minimal for elliptic curves over a function field of any genus. In each case, the optimal (E,P,T) are characterized by their patterns of integral points.

2020 ◽  
Vol 102 (2) ◽  
pp. 177-185
Author(s):  
RICARDO CONCEIÇÃO

Let $k$ be a finite field and $L$ be the function field of a curve $C/k$ of genus $g\geq 1$. In the first part of this note we show that the number of separable $S$-integral points on a constant elliptic curve $E/L$ is bounded solely in terms of $g$ and the size of $S$. In the second part we assume that $L$ is the function field of a hyperelliptic curve $C_{A}:s^{2}=A(t)$, where $A(t)$ is a square-free $k$-polynomial of odd degree. If $\infty$ is the place of $L$ associated to the point at infinity of $C_{A}$, then we prove that the set of separable $\{\infty \}$-points can be bounded solely in terms of $g$ and does not depend on the Mordell–Weil group $E(L)$. This is done by bounding the number of separable integral points over $k(t)$ on elliptic curves of the form $E_{A}:A(t)y^{2}=f(x)$, where $f(x)$ is a polynomial over $k$. Additionally, we show that, under an extra condition on $A(t)$, the existence of a separable integral point of ‘small’ height on the elliptic curve $E_{A}/k(t)$ determines the isomorphism class of the elliptic curve $y^{2}=f(x)$.


2004 ◽  
Vol 77 (2) ◽  
pp. 197-208 ◽  
Author(s):  
W. -C. Chi ◽  
K. F. Lai ◽  
K. -S. Tan

AbstractWe prove a new formula for the number of integral points on an elliptic curve over a function field without assuming that the coefficient field is algebraically closed. This is an improvement on the standard results of Hindry-Silverman.


2021 ◽  
Vol 7 (2) ◽  
Author(s):  
Matteo Verzobio

AbstractLet P and Q be two points on an elliptic curve defined over a number field K. For $$\alpha \in {\text {End}}(E)$$ α ∈ End ( E ) , define $$B_\alpha $$ B α to be the $$\mathcal {O}_K$$ O K -integral ideal generated by the denominator of $$x(\alpha (P)+Q)$$ x ( α ( P ) + Q ) . Let $$\mathcal {O}$$ O be a subring of $${\text {End}}(E)$$ End ( E ) , that is a Dedekind domain. We will study the sequence $$\{B_\alpha \}_{\alpha \in \mathcal {O}}$$ { B α } α ∈ O . We will show that, for all but finitely many $$\alpha \in \mathcal {O}$$ α ∈ O , the ideal $$B_\alpha $$ B α has a primitive divisor when P is a non-torsion point and there exist two endomorphisms $$g\ne 0$$ g ≠ 0 and f so that $$f(P)= g(Q)$$ f ( P ) = g ( Q ) . This is a generalization of previous results on elliptic divisibility sequences.


2010 ◽  
Vol 53 (1) ◽  
pp. 87-94
Author(s):  
Dragos Ghioca

AbstractWe prove that the group of rational points of a non-isotrivial elliptic curve defined over the perfect closure of a function field in positive characteristic is finitely generated.


1995 ◽  
Vol 38 (2) ◽  
pp. 167-173 ◽  
Author(s):  
David A. Clark ◽  
Masato Kuwata

AbstractLet k = Fq be a finite field of characteristic p with q elements and let K be a function field of one variable over k. Consider an elliptic curve E defined over K. We determine how often the reduction of this elliptic curve to a prime ideal is cyclic. This is done by generalizing a result of Bilharz to a more general form of Artin's primitive roots problem formulated by R. Murty.


2018 ◽  
Vol 39 (9) ◽  
pp. 2507-2540
Author(s):  
LAURA DE MARCO ◽  
DRAGOS GHIOCA

We present a dynamical proof of the well-known fact that the Néron–Tate canonical height (and its local counterpart) takes rational values at points of an elliptic curve over a function field $k=\mathbb{C}(X)$, where $X$ is a curve. More generally, we investigate the mechanism by which the local canonical height for a map $f:\mathbb{P}^{1}\rightarrow \mathbb{P}^{1}$ defined over a function field $k$ can take irrational values (at points in a local completion of $k$), providing examples in all degrees $\deg f\geq 2$. Building on Kiwi’s classification of non-archimedean Julia sets for quadratic maps [Puiseux series dynamics of quadratic rational maps. Israel J. Math.201 (2014), 631–700], we give a complete answer in degree 2 characterizing the existence of points with irrational local canonical heights. As an application we prove that if the heights $\widehat{h}_{f}(a),\widehat{h}_{g}(b)$ are rational and positive, for maps $f$ and $g$ of multiplicatively independent degrees and points $a,b\in \mathbb{P}^{1}(\bar{k})$, then the orbits $\{f^{n}(a)\}_{n\geq 0}$ and $\{g^{m}(b)\}_{m\geq 0}$ intersect in at most finitely many points, complementing the results of Ghioca et al [Intersections of polynomials orbits, and a dynamical Mordell–Lang conjecture. Invent. Math.171 (2) (2008), 463–483].


2018 ◽  
Vol 14 (03) ◽  
pp. 693-704
Author(s):  
Jędrzej Garnek

In this note, we investigate the [Formula: see text]-degree function of an elliptic curve [Formula: see text]. The [Formula: see text]-degree measures the least complexity of a non-zero [Formula: see text]-torsion point on [Formula: see text]. We prove some properties of this function and compute it explicitly in some special cases.


1988 ◽  
Vol 93 (2) ◽  
pp. 419-450 ◽  
Author(s):  
M. Hindry ◽  
J. H. Silverman

1977 ◽  
Vol 66 ◽  
pp. 99-108 ◽  
Author(s):  
Toshihiro Hadano

Let E be an elliptic curve defined over the field Q of rational numbers, then the torsion subgroup of the Mordell-Weil group E(Q) is finite and it is known that there exist the elliptic curves whose torsion subgroups E(Q)t are of the following types: (1), (2), (3), (2, 2), (4), (5), (2, 3), (7), (2, 4), (8), (9), (2, 5), (2, 2, 3), (3, 4) and (2, 8). It has been conjectured from various reasons that E(Q)t is exhausted by the above types only. If E has a torsion point of order precisely n, then it is known that E has an n-isogeny, that is to say, an isogeny of degree n.


Sign in / Sign up

Export Citation Format

Share Document