scholarly journals A database of genus-2 curves over the rational numbers

2016 ◽  
Vol 19 (A) ◽  
pp. 235-254 ◽  
Author(s):  
Andrew R. Booker ◽  
Jeroen Sijsling ◽  
Andrew V. Sutherland ◽  
John Voight ◽  
Dan Yasaki

We describe the construction of a database of genus-$2$curves of small discriminant that includes geometric and arithmetic invariants of each curve, its Jacobian, and the associated$L$-function. This data has been incorporated into the$L$-Functions and Modular Forms Database (LMFDB).

2008 ◽  
Vol 60 (4) ◽  
pp. 734-757 ◽  
Author(s):  
Srinath Baba ◽  
Håkan Granath

AbstractWe explicitly construct the canonical rational models of Shimura curves, both analytically in terms of modular forms and algebraically in terms of coefficients of genus 2 curves, in the cases of quaternion algebras of discriminant 6 and 10. This emulates the classical construction in the elliptic curve case. We also give families of genus 2 QMcurves, whose Jacobians are the corresponding abelian surfaces on the Shimura curve, and with coefficients that are modular forms of weight 12. We apply these results to show that our j-functions are supported exactly at those primes where the genus 2 curve does not admit potentially good reduction, and construct fields where this potentially good reduction is attained. Finally, using j, we construct the fields ofmoduli and definition for somemoduli problems associated to the Atkin–Lehner group actions.


2016 ◽  
Vol 19 (A) ◽  
pp. 29-42 ◽  
Author(s):  
Abhinav Kumar ◽  
Ronen E. Mukamel

We compute equations for real multiplication on the divisor classes of genus-2 curves via algebraic correspondences. We do so by implementing van Wamelen’s method for computing equations for endomorphisms of Jacobians on examples drawn from the algebraic models for Hilbert modular surfaces computed by Elkies and Kumar. We also compute a correspondence over the universal family for the Hilbert modular surface of discriminant $5$ and use our equations to prove a conjecture of A. Wright on dynamics over the moduli space of Riemann surfaces.


2016 ◽  
Vol 30 (2) ◽  
pp. 572-600 ◽  
Author(s):  
Huseyin Hisil ◽  
Craig Costello
Keyword(s):  
Genus 2 ◽  

2017 ◽  
Vol 11 (1) ◽  
pp. 39-76 ◽  
Author(s):  
Jeffrey Achter ◽  
Everett Howe

2011 ◽  
Vol 131 (5) ◽  
pp. 936-958 ◽  
Author(s):  
Kristin Lauter ◽  
Tonghai Yang
Keyword(s):  
Genus 2 ◽  

2015 ◽  
Vol 18 (1) ◽  
pp. 170-197 ◽  
Author(s):  
Reinier Bröker ◽  
Everett W. Howe ◽  
Kristin E. Lauter ◽  
Peter Stevenhagen

AbstractWe study the problem of efficiently constructing a curve $C$ of genus $2$ over a finite field $\mathbb{F}$ for which either the curve $C$ itself or its Jacobian has a prescribed number $N$ of $\mathbb{F}$-rational points.In the case of the Jacobian, we show that any ‘CM-construction’ to produce the required genus-$2$ curves necessarily takes time exponential in the size of its input.On the other hand, we provide an algorithm for producing a genus-$2$ curve with a given number of points that, heuristically, takes polynomial time for most input values. We illustrate the practical applicability of this algorithm by constructing a genus-$2$ curve having exactly $10^{2014}+9703$ (prime) points, and two genus-$2$ curves each having exactly $10^{2013}$ points.In an appendix we provide a complete parametrization, over an arbitrary base field $k$ of characteristic neither two nor three, of the family of genus-$2$ curves over $k$ that have $k$-rational degree-$3$ maps to elliptic curves, including formulas for the genus-$2$ curves, the associated elliptic curves, and the degree-$3$ maps.Supplementary materials are available with this article.


1995 ◽  
Vol 57 (2) ◽  
pp. 207-215 ◽  
Author(s):  
Shuguang Wang
Keyword(s):  
Genus 2 ◽  

Sign in / Sign up

Export Citation Format

Share Document