scholarly journals Low‐threshold motor units can be a pain during experimental muscle pain

2020 ◽  
Vol 598 (13) ◽  
pp. 2545-2547
Author(s):  
Ricardo N. O. Mesquita ◽  
Jakob Škarabot ◽  
Gregory E. P. Pearcey
2020 ◽  
Vol 598 (11) ◽  
pp. 2093-2108 ◽  
Author(s):  
Eduardo Martinez‐Valdes ◽  
Francesco Negro ◽  
Dario Farina ◽  
Deborah Falla

Author(s):  
Paul W Hodges ◽  
Jane Butler ◽  
Kylie Tucker ◽  
Christopher W. MacDonell ◽  
Peter Poortvliet ◽  
...  

Pain ◽  
2008 ◽  
Vol 140 (3) ◽  
pp. 465-471 ◽  
Author(s):  
Lars Arendt-Nielsen ◽  
Kathleen A. Sluka ◽  
Hong Ling Nie

2011 ◽  
Vol 12 (8) ◽  
pp. 911-919 ◽  
Author(s):  
Rogério Pessoto Hirata ◽  
Ulysses Fernandes Ervilha ◽  
Lars Arendt-Nielsen ◽  
Thomas Graven-Nielsen

2011 ◽  
Vol 111 (3) ◽  
pp. 743-750 ◽  
Author(s):  
Serajul I. Khan ◽  
Chris J. McNeil ◽  
Simon C. Gandevia ◽  
Janet L. Taylor

Muscle pain has widespread effects on motor performance, but the effect of pain on voluntary activation, which is the level of neural drive to contracting muscle, is not known. To determine whether induced muscle pain reduces voluntary activation during maximal voluntary contractions, voluntary activation of elbow flexors was assessed with both motor-point stimulation and transcranial magnetic stimulation over the motor cortex. In addition, we performed a psychophysical experiment to investigate the effect of induced muscle pain across a wide range of submaximal efforts (5–75% maximum). In all studies, elbow flexion torque was recorded before, during, and after experimental muscle pain by injection of 1 ml of 5% hypertonic saline into biceps. Injection of hypertonic saline evoked deep pain in the muscle (pain rating ∼5 on a scale from 0 to 10). Experimental muscle pain caused a small (∼5%) but significant reduction of maximal voluntary torque in the motor-point and motor cortical studies ( P < 0.001 and P = 0.045, respectively; n = 7). By contrast, experimental muscle pain had no significant effect on voluntary activation when assessed with motor-point and motor cortical stimulation although voluntary activation tested with motor-point stimulation was reduced by ∼2% in contractions after pain had resolved ( P = 0.003). Furthermore, induced muscle pain had no significant effect on torque output during submaximal efforts ( P > 0.05; n = 6), which suggests that muscle pain did not alter the relationship between the sense of effort and production of voluntary torque. Hence, the present study suggests that transient experimental muscle pain in biceps brachii has a limited effect on central motor pathways.


1992 ◽  
Vol 67 (5) ◽  
pp. 1375-1384 ◽  
Author(s):  
A. M. Aniss ◽  
S. C. Gandevia ◽  
D. Burke

1. Reflex responses were elicited in muscles that act at the ankle by electrical stimulation of low-threshold afferents from the foot in human subjects who were reclining supine. During steady voluntary contractions, stimulus trains (5 pulses at 300 Hz) were delivered at two intensities to the sural nerve (1.2-4.0 times sensory threshold) or to the posterior tibial nerve (1.1-3.0 times motor threshold for the intrinsic muscles of the foot). Electromyographic (EMG) recordings were made from tibialis anterior (TA), peroneus longus (PL), soleus (SOL), medial gastrocnemius (MG), and lateral gastrocnemius (LG) muscles by the use of intramuscular wire electrodes. 2. As assessed by averages of rectified EMG, stimulation of the sural or posterior tibial nerves at nonpainful levels evoked a complex oscillation with onset latencies as early as 40 ms and lasting up to 200 ms in each muscle. The most common initial responses in TA were a decrease in EMG activity at an onset latency of 54 ms for sural stimuli, and an increase at an onset latency of 49 ms for posterior tibial stimuli. The response of PL to stimulation of the two nerves began with a strong facilitation of 44 ms (sural) and 49 ms (posterior tibial). With SOL, stimulation of both nerves produced early inhibition beginning at 45 and 50 ms, respectively. With both LG and MG, sural stimuli produced an early facilitation at 52-53 ms. However, posterior tibial stimuli produced different initial responses in these two muscles: facilitation in LG at 50 ms and inhibition in MG at 51 ms. 3. Perstimulus time histograms of the discharge of 61 single motor units revealed generally similar reflex responses as in multiunit EMG. However, different reflex components were not equally apparent in the responses of different single motor units: an individual motor unit could respond slightly differently with a change in stimulus intensity or background contraction level. The multiunit EMG record represents a global average that does not necessarily depict the precise pattern of all motor units contributing to the average. 4. When subjects stood erect without support and with eyes closed, reflex patterns were seen only in active muscles, and the patterns were similar to those in the reclining posture. 5. It is concluded that afferents from mechanoreceptors in the sole of the foot have multisynaptic reflex connections with the motoneuron pools innervating the muscles that act at the ankle. When the muscles are active in standing or walking, cutaneous feedback may play a role in modulating motoneuron output and thereby contribute to stabilization of stance and gait.


2018 ◽  
Vol 236 (7) ◽  
pp. 1919-1925
Author(s):  
Sophie Kobuch ◽  
Luke A. Henderson ◽  
Vaughan G. Macefield ◽  
R. Brown

Sign in / Sign up

Export Citation Format

Share Document