Progressive Fatigue Life Prediction of Composite Materials Based on Residual Material Property Degradation Model

2021 ◽  
Author(s):  
Joshua Nakai-Chaptman ◽  
Youngho Park ◽  
James Sakai
2014 ◽  
Vol 1064 ◽  
pp. 108-114 ◽  
Author(s):  
Jun Kang ◽  
Zhi Dong Guan ◽  
Zeng Shan Li ◽  
Zhun Liu

A three dimensional analysis model is developed on the fatigue life prediction of composite laminates based on a progressive damage analysis. This model consists of stress analysis, fatigue failure analysis and material property degradation. Teserpe’s failure criteria is used to fatigue damage analysis. Fiber tensile/compressive breakage, matrix tensile/compressive cracking, matrix/fiber shear failure and tension/compression delamination are considered in fatigue damage analysis. The methodologies of sudden degradation and gradual degradation are both applied in the material property degradation. The stiffness and strength gradual degradation is based on the Shokrieh fatigue model, which is based on fatigue test for unidirectional laminates. In order to consider the scatter of the material in the practical structures, the stiffness and strength of the material are randomly distributed using normal distribution in the numerical model. The progressive fatigue damage model is developed in finite element code ABAQUS through user subroutine UMAT, which can simulate the fatigue damage process. Fatigue life of different ply stacking sequences and geometries composite laminates under different cycle loading are predicted. The predicted fatigue life is in good agreement with the experimental results.


Sign in / Sign up

Export Citation Format

Share Document