Computational Modal Analysis of Half Scale Generic Business Jet Substructures

2021 ◽  
Author(s):  
Christopher Lam ◽  
Chris Mechefske
Keyword(s):  
Author(s):  
Ian A. Donaldson ◽  
Chris K. Mechefske

Abstract Experimental modal testing is a technique through which the dynamic response of a system can be found. Parameters such as the natural frequencies and mode shapes of a system can be extracted through experimentation, and these results can be used to confirm computational models and guide structural improvements. This paper provides an overview of experimental modal analysis performed on two aircraft fuselage half scale subassemblies, with the use of shaker excitation. The experimental methodology including the construction of each structure, data acquisition parameters, and validity checks, is presented in detail. Linearity and repeatability checks were used to validate the testing methodology and increase the level of confidence in the experimental results. The experimental natural frequencies were correlated with the computational results, and recommendations were made. The experimental results presented in this work provide a basis for computational model updating work to be considered in future work.


2021 ◽  
Vol 147 (3) ◽  
pp. 04020100
Author(s):  
Nasser Heydari ◽  
Panayiotis Diplas ◽  
J. Nathan Kutz ◽  
Soheil Sadeghi Eshkevari

2015 ◽  
Vol 39 (1) ◽  
pp. 145-149 ◽  
Author(s):  
Ewa B. Skrodzka ◽  
Bogumił B.J. Linde ◽  
Antoni Krupa

Abstract Experimental modal analysis of a violin with three different tensions of a bass bar has been performed. The bass bar tension is the only intentionally introduced modification of the instrument. The aim of the study was to find differences and similarities between top plate modal parameters determined by a bass bar perfectly fitting the shape of the top plate, the bass bar with a tension usually applied by luthiers (normal), and the tension higher than the normal value. In the modal analysis four signature modes are taken into account. Bass bar tension does not change the sequence of mode shapes. Changes in modal damping are insignificant. An increase in bass bar tension causes an increase in modal frequencies A0 and B(1+) and does not change the frequencies of modes CBR and B(1-).


2021 ◽  
Author(s):  
David F. Castillo Zuñiga ◽  
Alain Giacobini Souza ◽  
Roberto G. da Silva ◽  
Luiz Carlos Sandoval Góes

Author(s):  
KUMAR P. S. RAVI ◽  
KUMAR P. NANDA ◽  
JANARDHANA G. RANGA ◽  
◽  
◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document