modal damping
Recently Published Documents


TOTAL DOCUMENTS

502
(FIVE YEARS 92)

H-INDEX

24
(FIVE YEARS 4)

2022 ◽  
pp. 1-35
Author(s):  
Hongli Ji ◽  
Xiaoning Zhao ◽  
Ning Wang ◽  
Wei Huang ◽  
Jinhao Qiu ◽  
...  

Abstract A previously proposed planar axisymmetric dynamic vibration absorber (DVA), with embedded acoustic black hole (ABH) features, has been shown to suffer from the very selective coupling with the host structure, thus compromising its vibration reduction performance. To tackle the problem, an eccentric ABH-based circular DVA whose thickness profile is tailored according to a circumferential gradient variation is proposed in this paper. This new configuration preserves the ABH profile in the radial direction alongside a continuous variation along the circumferential direction and breaks the axisymmetry of the original DVA design at the same time. While the former permits the ABH features to fully play out in a continuous manner, the later entails a more effective coupling with the host structure. These salient properties have been demonstrated and confirmed both numerically and experimentally by examining a benchmark plate structure. For analyses, a coupling model embracing the host structure and the add-on DVAs is established which allows the calculation of the coupling coefficient, a vital quantity to guide the DVA design. Studies demonstrate the advantages of the proposed DVA over existing designs for the same given mass. The enriched structural coupling and the enhanced modal damping, arising from the eccentric and circumferentially graded ABH design, are shown to be the origin of such improvement. All in all, the physical process underpinning the dynamic absorber principle and waveguide absorber from the host structures is simultaneously consolidated, thus leading to superior broadband structural vibration suppression.


2021 ◽  
Vol 9 (6) ◽  
pp. 1441-1457
Author(s):  
Mauro Häusler ◽  
Paul Richmond Geimer ◽  
Riley Finnegan ◽  
Donat Fäh ◽  
Jeffrey Ralston Moore

Abstract. Natural rock arches are rare and beautiful geologic landforms with important cultural value. As such, their management requires periodic assessment of structural integrity to understand environmental and anthropogenic influences on arch stability. Measurements of passive seismic vibrations represent a rapid and non-invasive technique to describe the dynamic properties of natural arches, including resonant frequencies, modal damping ratios, and mode shapes, which can be monitored over time for structural health assessment. However, commonly applied spectral analysis tools are often limited in their ability to resolve characteristics of closely spaced or complex higher-order modes. Therefore, we investigate two techniques well-established in the field of civil engineering through application to a set of natural arches previously characterized using polarization analysis and spectral peak-picking techniques. Results from enhanced frequency domain decomposition and parametric covariance-driven stochastic subspace identification modal analyses showed generally good agreement with spectral peak-picking and frequency-dependent polarization analyses. However, we show that these advanced techniques offer the capability to resolve closely spaced modes including their corresponding modal damping ratios. In addition, due to preservation of phase information, enhanced frequency domain decomposition allows for direct and convenient three-dimensional visualization of mode shapes. These techniques provide detailed characterization of dynamic parameters, which can be monitored to detect structural changes indicating damage and failure, and in addition have the potential to improve numerical models used for arch stability assessment. Results of our study encourage broad adoption and application of these advanced modal analysis techniques for dynamic analysis of a wide range of geological features.


2021 ◽  
Vol 9 (11) ◽  
pp. 1214
Author(s):  
Chan-Jung Kim

The dynamics of carbon fiber-reinforced plastic (CFRP) change according to the carbon fiber angle, and a mode order shift may occur in CFRP specimens. The variation trends in modal parameters differ in each mode; thus, an efficient mode-tracking method is needed to identify the reliable dynamic behavior of the CFRP structure. The mode-tracking method was assumed to be applicable for the same configuration of the tested specimen except for the differences in carbon fiber angle of the CFRP specimen. Simple rectangular specimens were prepared for one isotropic material, SS275, and five anisotropic CFRP specimens with five carbon fiber angles ranging from 0° to 90°. An experimental impact test was conducted to obtain all the modal parameters. The proposed mode-tracking method was applied using three indicators: the modal assurance criterion (MAC) and two modal parameters (resonance frequency and modal damping ratio). The MAC value was valid for the three bending modes at 0°, 30°, and 90°, but not for the two torsional modes. However, the variation in the resonance frequencies was a more efficient indicator with which to track all the modes of interest, except for the second torsional mode. The variation in the modal damping ratio was also a valid indicator for the two torsional modes. Therefore, the proposed three indicators were all required to derive reliable mode tracking for the CFRP specimens considering the mode order shift.


2021 ◽  
Vol 11 (21) ◽  
pp. 9809
Author(s):  
Sarah Gebai ◽  
Mohammad Hammoud ◽  
Gwendal Cumunel ◽  
Gilles Foret ◽  
Emmanuel Roze ◽  
...  

Research interest to provide a mechanical solution for involuntary tremors is increasing due to the severe side effects caused by the medications used to lessen its symptoms. This paper deals with the design of a cantilever-type tuned mass damper (TMD) used to prove the effectiveness of passive controllers in reducing the involuntary tremor’s vibrational signals transmitted by the muscles to the hand segment. TMD is tested on an experimental arm, reflecting the flexion-extension motion of the wrist, excited by a mechanical shaker with the measured tremor signal of a patient with essential tremor. The designed TMD provides a new operational frequency for each position of the screw fixed to its beam. Modal damping ratios are also calculated using different methods for each position. The effectiveness of the TMD is quantified by measurements using a vibrometer and inertial measurement unit. Three TMDs, representing 15.7% total mass ratio, cause a reduction of 29% for the acceleration, 69% for the velocity, 79% for the displacement, 67% for the angular velocity, and 82% for the angular displacement signals. These encouraging results will allow the improvement of the design of the passive controller in the form of a wearable bracelet suitable for daily life.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Guoping Huang ◽  
Jianhua Hu ◽  
Yuzhu He ◽  
Haibo Liu ◽  
Xiugui Sun

This paper investigates the optimization of viscoelastic dampers (VEDs) for vibration control of a transmission line tower. Considering the stiffness of the steel brace connected to a VED, the mechanical model of the VED-brace system was established. Subsequently, the additional modal damping ratio of the transmission line tower attached with VEDs was obtained analytically. Furthermore, the finite element model of a two-circuit transmission line tower with VEDs was built in ANSYS software, and the influences of installation positions and parameters of VEDs on the additional modal damping ratio were clarified. In addition, the control performance of VEDs on the transmission line tower subjected to wind excitations was emphatically illustrated. The results show that the stiffness of the steel brace connected to a VED has a significant effect on the maximum additional modal damping ratio of the VED-brace system provided for the transmission line tower and the optimal parameters of the VED. Meanwhile, the installation positions of VEDs dramatically influence the additional modal damping ratio. Moreover, the increase of the brace stiffness and the loss factor is beneficial to improve the control performance of VEDs. Besides that, the VEDs present superior control performance on the top displacement of the transmission line tower as well as the transverse bending vibration energy.


Author(s):  
Sebastian Mönninghoff ◽  
Markus Jaeger ◽  
Kay Hameyer

Purpose It is essential to understand the structural dynamic behavior of electrical machines to predict their acoustic and vibrational behavior. Stacking technology, which is used to manufacture soft magnetic cores, has a strong influence on the material properties. The purpose of this paper is therefore to research the influence of the stacking technologies welding and bonding with bake varnish on the modal properties of iron cores. Design/methodology/approach A finite element simulation model is developed based on homogenization of the stator core. Eigenfrequencies, modeshapes and modal damping ratios are extracted from measurements and are used to validate the simulation model. Findings Modal characteristics depend on the participation of certain material layers at a certain mode. Higher amount of shear deformation results in higher modal damping. Bonded stacks exhibit lower shear stiffness and higher damping ratios. Originality/value This research paper provides insights to the modal characteristics of iron cores used in electric machine and compares the influence of stacking technologies.


2021 ◽  
Author(s):  
Junjie Chen ◽  
Chaoping Zang ◽  
Biao Zhou ◽  
Evgeny Petrov
Keyword(s):  

Crystals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 781
Author(s):  
Chan-Jung Kim

The variation in the viscous damping coefficient with the carbon fiber angle can be evaluated using the partial derivatives of the viscous damping coefficient with respect to the resonance frequency and modal damping ratio. However, the direct derivatives of the viscous damping coefficient were not effective solutions to the sensitivity analysis of carbon-fiber-reinforced plastic (CFRP) structures because the viscous damping from the binding matrix was not changed over the carbon fiber angle. If the identified viscous damping coefficients were assumed to be equivalent values from the parallel relationship between the binding matrix and carbon fiber, the relative error of the viscous damping coefficient of carbon fiber between the increased carbon fiber angle and reference angle could be used as the sensitivity index for the viscous damping coefficient of carbon fiber only. The modal parameters, resonance frequency, and modal damping ratio were identified from the experimental modal test of rectangular CFRP specimens for five different carbon fiber angles between 0° and 90°. The sensitivity of the viscous damping coefficient of carbon fiber was determined for two sensitivity indices: the direct derivative of the mass-normalized equivalent viscous damping coefficient and the relative error of the viscous damping coefficient of carbon fiber. The sensitivity results were discussed using the five mode shapes of the CFRP specimen, that is, three bending modes and two twisting modes.


Author(s):  
Manish Pandey

The structural flexibility of passenger car bodies is paid most attention in research due to the effect it has on the passenger ride comfort. But as we are moving towards high speed and lightweight freight Railway stock, the issue of structural flexibility becomes essential in the case of freight wagons also. This paper investigates the effect of including the structural flexibility of the carbody of Indian Railway open freight car BOXNHL in the dynamic analysis. A mid surface meshed model of the subject carbody is developed using Hyperworks. Then, modal analysis is done using MSC FEA to identify the dominant flexible body modes. A simulation study has been conducted using NUCARS (New and Untried Car Analytic Regime Simulation) for an empty freight car on straight track and curve. Four types of carbodies have been considered for comparison- rigid carbody, flexible carbody having modal damping factor 0.04, 0.03, and 0.02. Vertical and lateral accelerations are chosen as the representative dynamic response parameters. The novelty of the present work lies in analyzing the effect of modal damping factors on the different response parameters (vertical and lateral accelerations) of empty BOXNHL freight wagon at different speeds. The field test results have been compared with the simulation results for identifying the modal damping factor with a minimum standard deviation.


Sign in / Sign up

Export Citation Format

Share Document